

J
I

_J

i

J

J
J
-J

J
J
J

J
J

-

J
J
J

I

J

j --
J

J
I _J

.THE MISOSVS GUARTERLV.

Volume I, Issue i

Table of .Contents

The Blurb • • • • • • • • •

Compuserve Special Interest Group

LDOS and LS-OOS Information

The Tower of Babel

Summer 1986

2

6

• • • 12

Assembly Language
BASIC

. . • . • • . . 21

C
Editors
FORTH

The Programmer's Corner
MACROs by Timothy Adye
POKEPR by Roy Soltoff •••
UNLOCK by Peter Lengsfeld ••••
BASICSVC by Robert M. Connors
Relocatable Assemblers by Roy Soltoff
Machine Sensing by Jeffrey R. Brenton

Product Highlights

• 22
• • • • • • 25

••• 36
• 39

44
• • • 45

45
50

• 52
• • • 55

• 64

Product in Focus: PRO-NTO, PRO-WAM •••••• 77
Public Domain Applications • • • • • • • 80
WinCalc application by Bryan Headley. • 81

The Hardware Corner • • • 86

The PATCH Corner

Copyright c 1986 by MISOSYS, Inc., All rights reserved
PO Box 239, Sterling, VA, 22170-0239

703-450-4181

• 88

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

The BLURB by Roy Soltoff

This is the first edition of THE MISOSYS
QUARTERLY. Somewhere between 400 and 500
MISOSYS customers have recognized the
value of this publication to their
computing interests by the support of
their subscriptions. Considering that the
notification of its impending publication
was mailed out to 16,000 recognized users
of our products, I am a little discouraged
at what I consider to be the poor response
to our subscription request mailing. On
the other hand, maybe many of the
recepients didn't realize that when we
said, "Each issue of THE MISOSYS QUARTERLY
will have a significant special available
only to subscribers", we really meant it!
In fact, to reward those early birds who
subscribed for this first issue, they will
find at least $19.95 in savings available
to them: $14.95 off the purchase of one of
a list of software items, and $5 off of
the price for DISK NOTES 5. We really
don't intend to overprint these issues as
the experience we learned from Logical
Systems is that past issues are a
liability - we have thousands of old LSI
QUARTERLYs and JOURNALS from Volume II.
The subscriber specials are noted on the
bound-in card which must be returned to
order any special.

More on the acquisition of LSI

KRB was taken aback by our recent
acquisition of the Logical System's retail
operation. Anyone who has followed the
TRS-80 history should feel quite at ease
with this event; however, since there may
be some readers unfamiliar with our
company, let me share my response to KRB.

To begin with, TRSOOS 6 does not enter
into the retail acquisition as TRSOOS 6 is
not a retail product of LSI. Next, be
aware that I was one of the co-founders of
Logical Systems and owned one third of
that company up until the reorganization
which occurred shortly before TRSOOS 6 was
being developed. I was also the system
designer of TRSDOS 6.0.

There is no technical support line in
Milwaukee. MISOSYS is located in Sterling
Virginia and that is where we will be
offering telephone support. Our number is

The Blurb - 2 -

prominently displayed in our ads as well
as listed on our literature. We will
continue to support what was the LSI
product line. I say that in the past tense
as MISOSYS has acquired the copyrights to
the products as well.

Since an LSI JOURNAL has not been
published by LSI for quite some time, I am
rather taken aback by the question as to
its continuance. On the other hand, to
demonstrate our willingness and desire to
support the TRS-80 user community, we
intend to initiate a new publication for
us to be called THE MISOSYS QUARTERLY.
This will be a cross between our NOTES
FROM MISOSYS and the old LDOS
QUARTERLY/LSI JOURNAL. This will be the
primary vehicle for written support [this
is the first issue -ed].

We have done away with updates to LDOS. We
sell replacement LDOS 5.1.4 disks for
$14.95 + S&H. So far, this has had
overwhelming approval from those customers
already taking advantage of this offer.
This arrangement saves the LOOS user from
mailing back the old disk; we provide a
brand new disk(s) in return.

Our registered customers will receive
flyers from us at intervals. The LSI
database is ours now. In fact, the machine
where the database resides is in our
premises. We are in the process of merging
the LSI base with our base. [This has
already been done -ed]. We sent out 16,000
flyers a few months back.

Since LOOS is our system now, we can best
answer questions concerning continued
development with the statement that any
development which is considered to be
prudent and which makes economic sense
will be considered. We intend to offer a
5.3 release which will at a minimum extend
the system date to beyond 1987. Other
enhancements will be considered.

What happened to THE GUIDE?

The following letter addressed to 80
Micra's Feedback Loop discusses why we
decided to stop publishing THE PROGRAMMERS
GUIDE TO LOOS/TRSDOS VERSION 6,

"It appears that one of your readers wrote

The Blurb

J
J
J
J
J
J
J
J
J
J
J
J

I
J

J

J
J
J
J
J

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

to you on the 5th of December berating
MISOSYS for not having any more copies of
THE PROGRAMMER'S GUIDE TO TRSDOS 6
especially complaining about our lack of
advertising of THE GUIDE. Since 80 Micro
surprised us with a review of THE GUIDE
which appeared in the November issue, the
resulting bubble in sales of that book
caused us to sell out much sooner than
expected. Since a few folks may have
gotten miffed that we chose not to reprint
the book, one of which wrote to you, per
haps your readers may also be interested
in knowing why we reached that decision.
We would hope that you would consider
printing this entire letter.

r-'7 was mailed to 2000 folks in December of
1983. Its first ad in 80 Micro was in the
June 1984 issue (which, of course, was

THE GUIDE was first published during
August of 1983; it was priced at $20
retail. Since the focus of the book was
directed to the assembly language
programmer, the publication was devoted
more to the hacker than the general Model
4 user. Because of this, it was marketed
directly to the core of hackers
frequenting the LSI Special Interest Group
(SIG) on Compuserve. THE GUIDE soon gained
notoriety on the PowerSOFT SIG, also on
Compuserve, and also frequented by the
TRS-80 hacker. It appeared in our 83-2
catalog available in November of 1983. Two
pages were devoted to THE GUIDE in our t
second issue of NOTES FROM MISOSYS which--J

Jan Feb Mar

83 42 42
so 24 21

Apr May

29 41
38 65

Jun Jul Aug

26
27 44 20

7 20 24

received in May).

In November of 1984, MISOSYS did another
direct mailing to our customer base and
placed THE GUIDE on sale for $15.00.
Effective January 1985, the price was
reduced to $14.95. Our ad in the February
1985 issue of 80 Micro (which was received
by subscribers in January) reflected the
price reduction. THE GUIDE continued in
our ads until the July 85 issue (we did
not place an 80 Micro ad in the August
1985 issue). Meanwhile, other vendors
continued to advertise THE GUIDE in 80
Micro as recent as the December 1985 issue
(JMG Software International and DiskCount
Data). PowerSOFT has had THE GUIDE listed
in their catalogs for quite some time.
Thus, for someone to say that THE
PROGRAMMER'S GUIDE TO TRSDOS 6 has not
been advertised means they are talking out
of their hat.

Let's examine just how many copies of THE
PROGRAMMER'S GUIDE TO TRSDOS VERSION 6
have been sold since it was first
published. Here are the monthly figures
for book sales since its publication in
August 1983:

Sep Oct

46 57
49 48
11 72

Nov Dec

38 65
99 85
75

Tot

232
609
407

/ ,,------··
The bottom line total is 1248 books in"-- ~/ owners to justify a reprint of 500 books -
over two years a dismal showing! The the minimum quantity necessary for
peak in November and December of 1984 reprinting. Thus, we can't justify
reflect our direct mailing with a sale reprinting this book since we consider its
p~ice of $14.95 versus the original $20. unit sales level insufficient to capture
The November issue of 80 Micro had a 500 more sales nor do we expect the TRS-80
little review of this book way back on Model 4 marketplace to have a considerable
page 119 of the "Express Checkouts" which increase in the number of assembly
caused a jump in sales of the book in language programmers who also wish to
October and November of 1985. That's purchase this book. Perhaps we're wrong to
really why we ran out of books. Of course, discontinue this book; however, we cer-
since THE GUIDE was published starting in tainly cannot afford to lose money over
August 1983, I consider that review about it. If the TRS-80 community of users wish
two YEARS late! us to continue publishing this book, they

We just don't expect the market to present
significant quantities of new Model 4

The Blurb - 3 -

need to· get more serious in their purchase
of it. Products need to be purchased with
sufficient volume to justify their contin-

The Blurb

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

uation. I don't think we are alone in this
feeling. What ever happened to IJG? What
ever happened to Dilithium Press? I am
still stuck with about 300 copies of THE
BOOK, Volume II. Since that's about the
Model I, no one wants it. Sorry, but not
enough people have purchased THE GUIDE for
us to continue it."

Since that was written, we have licensed
DiskCount Data to reprint THE GUIDE. Thus,
anyone needing a copy of that book may
obtain a new copy from them. We still
stand behind our statements, however.

Where's MISOSYS been?

David B. Lamkins inquired as to our
whereabouts during the lean months in
1985. No, we haven't dropped off the face
of the earth. In fact, we have been busy
with software development. Unfortunately,
the company has not made enough to be able
to put out another issue of NOTES. We
expect to get a letter out soon announcing
the new compiler, MC 2.x.

MRAS was released in August 85 and has
been advertised in issues of SO-Micro. We
hope to finish up MC for release by the
end of the month, although with
documentation left to do, it will probably
slip to November [the final release of MC
was released in July of 1986 -ed]. MC is a
very big job for Rich Deglin and myself.
Rich has done an outstanding job and I am
proud of what he has accomplished.

As far as future focus, my crystal ball is
so fuzzy, that I don't really have any
plans for other machines. I doubt the
Amiga will be a success since the home
consumer is so confused by now that
another razzle dazzle computer is not
about to make them spend big bucks.
Although the ST-520 Atari is less
expensive, what home consumer needs it?
Business these days went IBM compatible
since business needs stability. Even
though IBM is not leading edge technology,
it nevertheless keeps things stable. The
micro business is definitely not stable.

How would you like it if phonograph record
format changed every few years. At most,
over the span of tens of decades, I have
seen 78s, 45s (still around), 33s (still

The Blurb - 4 -

around), and now compact disks (CDs). I
expect CDs to take over entirely within 10
years. I expect that the CD-ROM drive will
be the one thing to galvanize the home
computer industry since I see that as a
solution to a problem that is evident in
every family. The CD-ROM definitely is a
viable solution to an existing need. I
can't wait to get my hands on Grolier's
CD-ROM encyclopedia at a reasonable price.
So much for rambling.

Daniel Fox inquired about the
possibilities of tying two TRS-80s
together via the RS-232 port. We had
considered such a facility last in 1984.
It would have been modeled after our ADE
floppy emulator except that the "emulated"
drive would be a drive on the remote
system. We were considering it as a
hardwired facility via the RS-232 for
enabling a higher speed transfer - which
would really be necessary.

The one thing which stopped us from this
project was manpower resources. You see,
nothing else was able to stand in the way
of other projects such as PRO-NTO, MRAS -
our latest relocating macro assembler, and
MC - our full K&R compatible C compiler.
We also needed time to implement a driver
for our Cipher FloppyTape cartridge drive
which stores about 28 Megs on a DC-600
tape cartridge (which still has not gotten
done yet).

We also had to get software implemented
for other machines. Thus, time was too
critical for that project's development. A
fully functional "TWOCLAN" (one name we
picked standing for two computer local
area network) would probably take about
three man months of development time. That
would probably encompass six months of
clock time. We just didn't see that kind
of time materializing; however, the idea
was a good one. It would be fairly elemen
tary to connect the "remote" computer so
as to be able to share all its
peripherals.

To add a more current note to the previous
paragraphs, we have recently released a
powerful BASIC compiler for the Models
I/III and Model 4 machines. We still
expect to release a RATFOR translator some
time this year. We will be working on the

The Blurb

J
J
J
J
J
_j

J
J
J
J
J

i

l
_J

J
J
J
J
J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

LOOS 5.3 release to be out in early 1987.
We also expect to port some of the LSI
Model I/III utilities to the Model 4
environment. We also expect to retail a
hard disk driver package for the Radio
Shack hard drives, soon. Rich Deglin is
working on a powerful disk editor for MS
OOS. Karl has been hacking at an IFC for
MS-OOS. Also on the drawing board is a
port of Disk Sort Merge (DSM) to MS-OOS
(we may even look at porting BSORT). We
thusly have been busy and will continue to
be busy generating and supporting products
for the TRS line of computers.

Letters to the editor

Ed Clapp comments on NOTES: "In my opinion
you provide through that publication the
best support for your products of any
software supplier, including some of the
best known and I sincerely hope you will
be able to continue publishing it. If
things become too tight in the present
market squeeze I would suggest that you
offer it on a subscription basis. I am
sure that most of your customers would be
willing to pay for it - I certainly would.

Tom Wyckoff reports that, "A recent maga
zine article stated that although Commo
dore invented software incompatibility,
Tandy raised it to an art form. That gave
me quite a laugh. I wrote this using Mod I
Scripsit, with Mod III LOOS on my Mod IV.
Granted they had some outside help, but
that's a long way from incompatable. 11

OOS 5.3/6.3 coming soon

Logical Systems reports that they are
testing the upcoming release [early 1987]
of TRSDOS 6.3. Complete details on this
release will be in the next issue of THE
MISOSYS QUARTERLY. Suffice it to say that
the primary enhancements will be the
directory date extension to about 1999 and
the introduction of time stamping. There
will also be additions to BASIC such as
the BEEP facilities, a cross reference
facility, and a facility to invoke SVCs
from BASIC. MISOSYS is providing a full
screen text editor modeled after TED - the
editor which is part of our Mister ED
application pac.

MISOSYS will also be releasing LDOS 5.3

The Blurb - 5 -

early next year. It too will have the date
extension and time stamping, as well as
some improvements to BASIC. I expect to
also provide a 64xl6 version of TED.
Further details will be announced in the
next QUARTERLY.

Contributions to THE MISOSYS QUARTERLY

MI SO SYS is accepting articles for
consideration of their use in future
issues of TMQ. Articles should be sub
mitted on both floppy disk media and
paper. At this time, the compensation for
articles selected for publication is a
MISOSYS Gift Certificate(s). Any articles
already submitted but not yet published
may still be considered for future publi
cation. Thanks for your sincere efforts.

Current LOOS release

The current release of LDOS is 5.1.4.
Files are dated August 5, 1984. If your
existing user manual is from an LDOS 5.1.3
or LDOS 5.l.3R release, be advised that we
have a set of ducumentation updates which
can be purchased to bring your 5.1.3
manual up to date. The charge is $2 IF YOU
ARE PLACING SOME OTHER MERCHANDISE ORDER.
If ordered separately, the charge is
$2.50. These prices are for United States,
Canada, and Mexico only! Please specify
514 docs or 514R docs; whichever is
appropriate for you.

Software Submissions

MISOSYS is looking for quality application
software submissions for publication. The
primary focus is on applications and
utilities for use with MS-OOS compatible
machines - primarily Tandy compatibles.
Submissions should be accompanied by
complete documentation for the targeted
end user. We still maintain an interest in
software for the TRS-80 Model 4, where the
software product is targeted to a wide
audience. Our forte is language products
and DOS enhancements. Submissions should
be directed to the attention of "Software
Submissions".

Family Update

It's been a while since the last report.
Stacey turned 3 in June. Stefanie's second

The Blurb

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

birthday is this October. No further
arrivals are scheduled. Over at the·Kids R
Us opening, Stacey measured in at 3 feet 3
inches against Stefanie's 3 feet. Stef's
vocabulary has gotten her to the position
of being able to vocalize her wants (i.e.
more Juicy Juice, more Cheerios, etc.).
Now Stacey, on the other hand, amazes me
with her breadth of vocabulary and
understanding of events. I guess its been
quite some time since I was three. Part of
our "training" is no candy, no cartoons,
and generous doses of Sesame Street. Since
getting on cable, the Disney channel also

offers some good viewing material
especially for Brenda. There's also plenty
of Dr Seuss books around.

This Fall, we are planning to schedule
Stacey into a three-day-a-week three-hour
a-day pre-school that's targeted for fun
and games. Stacey up to this point was
going to a fun-for-two-year-olds class
which met two days a week for an hour
each. Stefanie advances to that class now.
The big question is when do I pop for
their own Model 1000? Until next time •••

=

Our LOOS Support Group on Compuserve

MISOSYS is the FORUM MANAGER of a Special
Interest Group (SIG) on Compuserve. This
SIG is properly entitled the LDOS/TRSDOS6
SIG. It is one of the oldest SIGs on
Compuserve and has been a strategic
facility for technical discussions
concerning LOOS, TRSDOS6, the MAX-80, and
the TRS-80 in general. The System
Operator, or SYSOP, is Joe Kyle
DiPietropaola [known as jjkd]. Joe is a
former employee of Logical Systems, knows
the DOS well as well as most of the
combined LSI/MISOSYS product line, and
serves as SYSOP for us.

The SIG is frequented by many knowledgable
folks; not to mention many just getting
their feet wet. Therefore, the SIG is a
handy way to rapidly get an answer to a
problem which you may be having - be it a
new one or an old one.

The SIG is also host to a number of data
bases - each containing lots of "goodies"
for your use. Some of the files are
shareware, some are freeware, and some are
public domain. Check out our SIG. All you
need is a Compuserve USERID, a modem for
your machine, and time to logon. From the
Compuserve main menu, you only need to GO
PCS49! What follows are some recent
messages concerning the use of our SIG.

Becoming a SIG Member

Fm: LOOS Support 76703,437 -> To join the
LDOS/TRSDOS 6 Forum, all you need do is

Compuserve Special Interest Group - 6 -

pick the "JOIN" option on the non-member
menu. Welcome aboard! --jjkd--

Reading SIG Messages

Fm: LOOS Support 76703,437 -> The SB
command will give you descriptive names
for the sections. This command is valid at
both the Function: and DL n: prompts. To
set your user options, issue the OP
command at the Function: prompt. You will
see a number of options, and you wish to
turn off Brief prompts, and also turn on
menu mode. That's "BRE OFF" and "MEN ON"
Finally, make sure that you save the
changes. --jjkd--

Fm: LOOS Support 76703,437 -> To read
messages in the message base that are new
since you last logged on, do a "RN" at the
Forum main menu. To find out what is
available to download for the Model
4/TRSDOS 6, do the following: "DL 3" will
get you to the Model 4 download area.
Follow that with a "CAT /DES" to get a
catalog of all available files with
descriptions. This is a long list, and I
recommend that you hardcopy, or capture to
a disk file. You can then examine the list
at will, and come back later to download
the files you'd like to have. To download,
use "DOW FILNAM.EXT" at the DL prompt. If
presented with a protocol menu (CIS "A",
"B", "XMODEM", etc.), choose the one that
your terminal program supports. Remember
to give the file the proper name on your
system, e.g. BINHEX.TXT would become
BINHEX/TXT, MOOSE.BIN would become
MOOSE/CMD, etc. Feel absolutely free to

Compuserve Special Interest Group

J
J
J
J
J
J
J
J

J
J
J

I

J

J
J
J
J
J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

yell with more questions at any time. Oh
yeah, to get out of the DL area and back
here to the "main Forum" use the "EXIT"
command. --jjkd-

Fm: LOOS Support 76703,437 -> Not all
commands update your last message read
pointer. In general, the "mass read
commands" (RF, RN) do, and the "individual
read commands" (RI, RM) don't. Note also
that if you read messages, go to the DL
area and then logoff or bye from there,
your message pointer will not be updated
even if you used RF or RN. You must use
EXIT to return to the Forum, and can then
Logoff or Bye from here. --jjkd-

Fm: H. Brothers <OLT/WESIG> 70007,1150 ->
Logging on with *tty does, indeed, make a
major difference. If you want/need more
than one set of defaults per baud rate,
the process is not too difficult to do,
but you'll need to muck around in PRO a
bit. SU= store unformatted. Instead of a
normal <s>tore at the Leave Action prompt,
you can type SU (or SPU) to tell the Sig
formatter "no matter what screen para
meters the readers of this message have
set, **don't** reformat this message to
make it easy for them to read." Another
way of interpreting SU is "keep your hands
off the separate lines and tab columns
which I worked so hard to create."

Editing Your messages

Fm: LOOS Support 76703,437 -> FILGE
doesn't get you any mo~e message
formatting capability than the normal SIG
editor. It merely allows you to put in
blank lines, not necessarily keep them. To
get a blank line, you need to enter a line
as a single period, then start the next
line with a period or a space. The space
will cause the line to also be indented,
the period will not. In neither case will
the period show. You also have the option
of using SU Store Unformatted instead of
the normal S. This will prevent the SIG
software from doing this kind of
reformatting, and what you type will be
exactly what you get. This is not a
universal panacea, as it will also prevent
the SIG software from reformatting your
message to the proper width for the
receiving terminal. SU should only be used

Compuserve Special Interest Group - 7 -

as a last resort. For tabbing, 11 .>n" will
indent "n" spaces from the left margin.
Note that this formatting is specific to
the SIG display software, and has nothing
particular to do with FILGE or SED (the
"other" SIG editor). --jjkd--

Fm: LOOS Support 76703,437 -> The screen
width in the Forums is set independently
of your screen width in the "normal"
(DISPLA) area of CIS. That is what is set
through DEFALT. Your screen width in the
Forum is set via the OP command. --jjkd-

Fm: H. Brothers <OLT/WESIG> 70007,1150 ->
When you enter C at the leave action
prompt, you are returned to the Filge
editor and the top of the document. You
can start a line with /B to move to the
bottom, or /TYPE to see the entire message
and move to the bottom. Filge, even in its
emasculated SIG version, has a great deal
of power and flexibility a lot more
than the "SIG Editor" called SED. However,
it takes some practice to get used to it.
If you are interested, I can point you to
some instructional files that explain both
the normal and arcane commands available
in Filge. - hardin

Uploading, Downloading, and MNETA

The following series of messages relate
primarily to the access of files in the
various Download sections of our SIG. The
DLs encompass the storehouse of programs,
fixes, and technical information which has
been provided over the years by our users.
There's lots of freeware, shareware, and
"stuff". Here are some hints on how to get
ahold of these files and how to add to the
storehouse.

Fm: Les Mikesell 70010,266 -> The DL's are
the download areas of the SIGS. From the
SIG function prompt type SN to get a list
of the section numbers and their topics.
The DL areas contain files related to the
same topics (DL 3 is the mod 4 area here
although a re-organization is planned). To
get there, just type DL 3 at the function
prompt. The commands there work just like
the public ACCESS area. - Les

Fm: jeff brenton [CLMFORUM] 76703,1065 ->
Type "DL 3<cr>" - the XA's are now called

Compuserve Special Interest Group

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

Data Libraries, or
"XA3<cr>" might still
tried it recently, and
months since "XA"
supported.

DL' s, al though
work. I haven't

it has been over 18
was officially

Fm: LOOS Support 76703,437 -> Do you have
anything to use for download other than
COMM? If not, turn on your printer and
enter the command, XS, at the main Forum
prompt. This will give you step by step
instructions for simple downloading with
COMM. Use this info to get MNETA.JCL from
DL3. Download this to a file called
MNETA/JCL, and DO it. You will be left
with a file MNETA/CMD that will upload and
download here using CIS "Alt protocol,
which is much more reliable than using
COMM (which has no error checking). Make
sure that you SETCOM (W=8,P=N,BREAK=0)
before using MNETA. Any questions or
problems, just yell. --jjkd-

A 26K file is fine, but we do not
recommend the use of BINHEX for files of
that length. Instead, do this: Go into
BASIC. Load the program. Save it in ASCII
(via SAVE "FILE SPEC/EXT" ,A). You may now
upload the file using one of the supported
protocols (CIS "A", CIS "B" or XMODEM) and
the command "UPL PROGRAM. BAS/TYPE:ASCII".
That should do it. --jjkd--

CIS filenames are limited to six letters,
so some abbreviation is usually called
for. Any filename greater than 6
characters will be truncated. Thus, if you
upload two files [e.g. TELCOMl.BIN and
TELCOM2.BIN], the second will overwrite
the first. You can use a shorter name and
then use the description field for more
detailed info. --jjkd-

SQueezed files are binary, and must be
uploaded via commands like "UPL
XT4168.LQR/TYPE:BINARY". "/TYPE:BINARY" is
what you were missing. --jjkd--

OK, for packed strings (all eight bits)
and ML, etc., leave the program in com
pressed format, but upload it via BINARY,
ala "UPL filnam.BAS/TYPE:BINARY" Note that
you must use CIS "A", CIS "B" or "XMODEM"
to upload with this option. --jjkd-

Do this: (1) SET *CL COM/DVR;
(W=8,P=N,BREAK=0) [insert

(2) SETCOM
baud rate

Compuserve Special Interest Group - 8 -

selection if necessary]; (3) COMM *CL; (4)
When you get to the point that you wish to
download a file, *before* downloading do a
<CLEAR><SHIFT><0> to execute a DOS
command, execute the DOS command "MNETA
*CL"; (5) Now you may is sue the BRO or DOW
command to CIS, and when asked for a name
for your computer make sure that you use a
slash(/) instead of a period (.) as
necessary. The key points are that BREAK=0
and the fact that MNETA must be running
before you indicate that you wish to
download a file. With XMODEM it's
generally the other way 'round, you start
the host before you start your end. Note
also that you pick CIS "A" protocol as
your transfer option. If you don't get
asked, go to CIS-9 and set your terminal
type to "other". --jjkd-

Fm: Les Mikesell 70010,266 -> There are
two things you must do when using MNETA:
(1) If you have TRSDOS 6.2 use SETCOM
(W=8,P=N,BREAK=0), otherwise
SETCOM(W=8,P=N,BREAK=l28) - these are OK
for COMM also. (2) Be sure to invoke MNETA
before choosing the A protocol in the
download procedure. CIS immediately sends
a query to your program when you choose A
or B protocol which will be missed if you
are still in COMM at this point. - Les

Fm: jeff brenton [CLMFORUM] 76703,1065 ->
That means that you have already selected
protocol before loading MNETA, and CIS is
waiting for a reply from it's test. The
secret is to invoke MNETA, *then* go into
the DL. If MNETA is *not* running when you
answer the "Select protocol" prompt,
you're out of luck. Right after you hit
<ENTER>, CIS sends out the "OK, who are
you?" inquiry to your terminal. While it
is doing that, you are off loading MNETA.
MNETA never sees the question, so it can't
answer it. CIS never gets a reply, so it
aborts the download, since you don't
support A protocol. Don't feel bad - I
used to do it all the time!

Message Limits

Fm: Bill Evans 70160,436 -> According to a
Compuserve reference card for Forums the
message limit is 96 lines or 2500
characters, which ever comes first. - Bill

Compuserve Special Interest Group

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

J
I

J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

Help for the DAK-ADC 'Duck' modem

Fm: Nate Salsbury 72167,1750 -> I haven't
picked up GETTIME/CMD [used to read the
time from the DAK modem and set the DOS
time -ed]. Try scanning in DL 3: "S
GET???.???/DES". Also, try "CAT [PPN of
the author of GETTIME/CMD] /DES". This will
give you ALL the files that person has put
into the DL.

What's in the DL sections?

Fm: BOB KAYE 73047,2422 -> Can anyone tell
me how to have the description of a DL
program written to the screen if you don't
know any of the keywords; the program name
is apparently not one of them. Thanks in
advance - Bob Kaye

Fm: Jim Kyle (CLM SIG) 76703,762 -> If you
know the name, type S name /DES and hit
ENTER. If you know just the first letter,
make it S X????? /DES (assuming that X was
the first letter). For all files in the
DL, S/DES will do it. You'll get the same
display as for BROwse, but it won't have
the pause and prompt; instead, (if you
used a wildcard or all) it keeps going
until all are shown and then you get the
DOS prompt. This is a nice way to make
your own catalog. just open the capture
buffer and do S/DES. Then when it's done
save the list and examine it offline. If
you want a full list of all keywords used
in a DL, the command KEY will give it to
you. I use this when i don't know either
the filename or the keywords used for it;
usually I get enough hints frrom the KEY
listing to be able to do a BRO
/KEY:keyword and find it ••• jk ••

Fm: LOOS Support 76703,437 -> If you know
the program name, or part of it, you can
do either a BROwse or CATalog based on
that name, or a wildcard. For example, for
a filename that you think begins with FOO:
"BRO FOO???.???" or "CAT FOO???.???/DES".
The first will show you the files one at a
time, with descriptions, and the second
will give you a continuous listing with
descriptions. --jjkd--

Fm: Jim Kyle (CLM SIG) 76703,762 -> I
learned a new trick since leaving the
message: KEY D* will give you all keywords

Compuserve Special Interest Group - 9 -

in that DL that start with D. Used it last
night to find all of the files (both of
them) with keyword DISASSEMBLER in all 5
IBM SIGs, and it took only a few minutes
to scan all 45 DL's involved. MUCH faster
than using BRO!!! •• jk ••

Information on Communications

Here's some information concerning our X
FTS package. The XMODEM protocol is not a
CP/M protocol - it is a protocol for the
transfer of files. A file is a file. There
is no requirement for the file to be text
or binary. The protocol dictates a
transmission of 128-byte blocks with
handshaking on each block. Thus, there
should never be any action on the part of
any program which adheres to the XMODEM
protocol to alter or modify the data
within a block. Since the X-MODEM protocol
was ORIGINALLY developed on a CP/M system,
it has been populated across all sorts of
systems. Our implementation on the TRS-80
satisfies the standard. If you are trying
to transmit a text file which incorporates
some line ending sequence to a system
which uses another line ending sequence,
the proper procedure would be to either
preprocess the file or postprocess the
file. I would never recommend processing
the file during transmission.

Our LCOPY and PRO-CURE/CONVCPM products
relate specifically to the transfer of
files from LOOS to CP/M and from CP/M to
TRSDOS/LDOS respectively. Since the
products directly relate to two systems
which use a different line ending sequence
for text files, each product includes a
program which is used to post process the
file. CVTEXT supplied with LCOPY adds
linefeed to follow carriage return. CVTEXT
supplied with PRO-CURE/CONVCPM removes
linefeeds which follow a carriage return.
A program to add line feeds is extremely
simplistic. It could be written in C in
about 2 minutes. I recommend that you
explore implementing such a preprocessing
program to convert TEXT files which you
want to send to the VAX to adhere to the
line ending sequence used by the VAX.
Preprocess your text files then use X-FTS
on the processed file.

Compuserve Special Interest Group

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

Here are some communications' tips gleaned
from our Compuserve SIG.

Fm: WINSTON BARROWS 73537,1366 -> How do I
turn off the reverse video frequently
effected when I'm on-line?

(RE): If you are using COMM, then do a
CLEAR SCREEN command (which is
<CLEAR><SHIFT 8>). -Roy

Fm: LOOS Support 76703,437 -> 9600 baud is
awful fast for that poor Model 100. It
won't even keep with receiving at 1200
baud in many cases. Sending from the Model
100 to the Model 4 is ok at up to 1200
baud with DTD on, and up to at least 4800
baud ok with DTD off. Do this:

(1) Set up with the correct baud rate,
parity, etc. the same at both ends. How
about 37ele at the Model 100 end, and
SETCOM (B=l200) at the Model 4 end.

(2) Go into COMM at the Model 4 end, and
do a <clear><6> <clear><9> which is
Receive File ID, and enter a file name.

(3) Do a <clear><6> <clear><:> which is
file receive on.

(4) Do a <clear><7> <clear><-> which is
DTD (dump to disk) off.

(5) Start the transfer at the Model 100
end.

(6) When the xfer is done, do a <clear><6>
<clear><-> which is file receive off,
followed by <clear><7> <clear><:> which is
DTD on.

(7) When the drive stops running, do a
<clear><6> <clear><0> which is file
receive reset to close the file. --jjkd-

Fm: LOOS Support 76703,437 -> Ok, [for
file transfer between LOOS LCOMM on the
MAX80 and the Model 100] let's take it a
step at a time:

Compuserve Special Interest Group - 10 -

(1) Get a null modem cable to hook the two
machines together. If you want to make
your own, that is not very difficult. Say
so and we'll go through that.

(2) Connect them together via the cable
obtained in {Fl.

(3) On the MAX, enter the following
commands: SET *CL RS232M and LCOMM *CL

(4) On the MlOO, go into TELCOM and set
your stats as 37IlE.

(5) On the MlOO, go into terminal mode.
You should now be able to type back and
forth between the two machines. Hitting
enter will not necessarily move the cursor
to the next line, thus each line may
overwite the previous line on the screen.
Don't worry about this yet.

(6) To send a file from the Model 100 to
the Max:

(a) on the MAX, do the keystrokes in
boldface which mean the text in brackets:
<clear><6> [File Receive]; <clear><9>
[identify the file]; filespec/ext:d [this
is where you specify what file on the
Max80 will receive the data]; <clear><7>
[dump to disk]; <clear><-> [off (don't
store to disk now)]; <clear><6> [file
receive]; <clear><:> [on]. The Max is now
ready to receive the file

(b) on the 100, do: <upload> [hit whatever
that function key is, I forget]; <enter>
[just hit enter for the width prompt]. The
100 is now sending the file. When it has
finished:

c) On the Max, do: <clear><6> [file
receive]; <clear><-> [off]; <clear><7>
[dump to disk]; <clear><:> [on] the file
is now written to the disk. <Clear><6>
[file receive]; <clear><O> [reset] the
file is now closed. That's it! When you've
got that working, we'll cover the reverse
direction. Then, we'll see about getting
more speed. --jjkd-

Compuserve Special Interest Group

I
..J

J
j

J
J
J

I
J

I
I

.....J

J
J
J
J
J

I
...J

I
...J

J
J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

The DOS Column

This DOS section will be covering a pot
pourri of items concerning primarily LOOS;
but also including some topics of LS-DOS
6.x and its most popular release, TRSOOS
6. x.

The Programmer's Guide

Victor McClung caught an error in THE
PROGRAMMER'S GUIDE TO LDOS/TRSDOS VERSION
6. On page A-183, it states that you can
end a string parameter with an <ENTER>.
THE GUIDE is wrong. Victor was right about
the required closing quotes on a string
entry using an @PARAM SVC. Page A-183 of
"THE GUIDE" is indeed incorrect. Checking
back into earlier releases, this
requirement was not added in 6.2 - it was
always there. If memory serves me
correctly, I was going to add this
facility when I did 6.0; apparently, it
never got in.

Mod4 port control under LOOS

Ronald Wick had a problem with the
INVBEL3/FLT which appeared in NOTES, Issue
IV. Any filters or drivers which make use
of the Model 4 hardware features that are
switched via a Z-80 port when operating in
Model III mode generally maintain an image
of the port in RAM. This is similar to the
image of the MODOUT port kept in the Model
III DOS products. INVBEL3 keeps an image
of the memory management port in RAM
address 40ADH. I discovered this by
disassembling the filter. Since filters
such as this do NOT initialize this mask
image, they assume that something has
initialized it. Well, unless you have
patched your DOS, 40ADH is not initialized
by LOOS. When operating in the Model III
mode, the value must be initialized to
zero (hex). You can accomplish this via a
patch to SYSO/SYS with the command: PATCH
SYS0/SYS.RS0LT0FF (X'40AD'=00). Note that
the password shows numeric zeroes, not
letter ohs. I tested INVBEL3/FLT both
before and after setting that byte to
zero. The filter does indeed cause a crash
which is the result of the value
previously contained in 40ADH. After the
initialization, the filter works as

LOOS and LS-DOS Information 11 -

advertised. I believe that I will code
LOOS 5.3 to standardize X'40AD' for that
use and to initialize it to a value of
zero.

Model 4 Inverse Video

Here is some information which will
clarify the behaviour of the Model 4's
inverse video. The non-programming reader
may find the discussion on inverse video
enlightening. Programmer's should read it
to avoid falling into a trap. The text
relates to a HELP facility and the
keyboard interaction.

The Model 4 hardware has a primitive
inverse video. What is done is that it
uses the high-order bit of the displayed
byte (bit 7) to indicate that a particular
character is to be inverted when the
hardware is set for inverse video ON. I
say that it is primitive because bit 7 is
used for other things when inverse video
is OFF. Thus, if the display driver
accepts character values whose bit-7 is on
when under normal video, these will be
interpreted as inverted characters when
the hardware is switched to inverse video.

The standard ASCII codes range from 1
through 127 (X'Ol' through X'7F'
hexadecimal). Thus, the standard ASCII
codes are denoted by character values
using bits 0-6; bit-7 is always off (a
zero, to speak). When the display driver
senses the code to turn on inverse video
(16d), it does two things: it switches the
hardware to inverse video and flags a
routine to turn on bit-7 of all characters
received by the driver until the inverse
video off code is received. What then
happens to character values already
represented by a code with bit-7 on while
inverse video is ON? They will be
displayed as some standard ASCII character
- but in inverse video. That's why the
solid block cursor which has a character
value of X'BO' appears as an inverse zero
which has a character value of X'30'. The
difference between X'BO' and X'30' is that
the former has bit-7 set.

Once the driver is in inverse video, when
the code to turn OFF inverse video is
sensed (17d), the driver just "un-flags"

LOOS and LS-DOS Information

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

the bit-7 setting routine. The driver
cannot tell the hardware to switch to
normal video because then any characters
left on the screen in inverse video will
be transformed into some other non-ASCII
character. Only when a home-cursor (28d)
is sensed, will the display driver switch
the inverse video hardware to normal.

Okay, a HELP screen, which uses inverse
video, accepts a response to a prompt to
return to BASIC. If a function key is
entered as "the key", you get an inverse
video "something" if @KEYIN is used for
the input or if the entered character is
displayed. The @KEYIN SVC is great for
accepting input lines; however, since it
was designed for a "line input", it
automatically displays the entries prior
to returning to what invoked it. The
function keys Fl-F2 generate codes X'81'
X'83'. The display of the function key
code entered will then look like an
inverse video character. Check the
appendix (page A-70) in the TRSOOS 6
manual and note that the "something" will
be that shown for codes 1, 2, or 3
(shifted function keys will produce
characters for codes 17, 18, or 19 if
inverse video is on). The solution is to
not use @KEYIN but use @KEY. The @KEY SVC
is a single key entry it does not
display the character entered.

- \
(£Y:?1'f;J-?,StJ Co nri I) ,..,,J'/ .11\./ 7/}.1:../'A l-7.,f.-~<,/

ECI's: Hints and Kinks

Here's a few technical comments concerning
ECI's used under TRSDOS 6. As far as the
statements concerning SYS13/SYS on page A-
180, the GUIDE is correct. The GUIDE does
NOT state that control is passed to SYS13
after execution of a program invoked by
@CMNDR. The SYS13 module gains control
from SYS!. Now with an additional
understanding of the system, one would
know that @ABORT and @EXIT processing
request a command entry from the keyboard
(or from JCL if it's active). The @CMNDI
and @CMNDR requests have had HL pointing
to the user's command string. If the first
character is '*', control goes to SYS13
(the ECI). The @ABORT, @EXIT, and @CMNDI
functions have placed the return address
of @EXIT on the stack prior to going to
SYS13. The @CMNDR has not touched the
stack - the return address on the stack in

LOOS and LS-DOS Information - 12 -

effect is the address following the @CMNDR
SVC.

The discussion of SYS13 states nothing
about register HL. The PROGRAM ENTRY
CONDITIONS on page 6-100 do not pertain to
SYSnn/SYS entries. However, you are
correct if you observe that HL points to
the character following the '*' (a kludge
on the part of the the OOS in an attempt
to have it follow the program entry
conditions). As an aside, BC points to the
'*' - which is always going to be the
start of the command line buffer. BC does
follow program entry conditions, DE does
not.

RET opcodes are not subject to the value
of EFLAG$ they are subject to the
correct coding and honoring of the stack
as the ECI should follow! All programs
should exit with a RET instruction if they
are capable of being invoked via @CMNDR.
All programs that change the value of SP
should restore the SP to its initial value
prior to RET'ing. That's true of the ECI,
also.

LS-OOS 6,2 for the Model II/12

The LS-OOS 6.x Operating System for the
TRS-80 Models 2 and 12 provides an
environment compatible with the TRS-80
Model 4 running under TRSOOS 6.x. All
software that uses only documented system
resources of TRSOOS 6.x should operate
without modification on the Model 2/12
under LS-OOS 6.x.

LS-OOS is distributed entirely on an AS-IS
basis. MISOSYS will answer no technical
questions regarding the use of this
system, programming under this system, or
on the technical interface to the system.
This policy is due to the very limited
distribution of this system. Because of
this condition, we recommend that LS-OOS
6.x be purchased only by the technically
advanced user. If you are not familiar
with programming and running under TRSDOS
6 (or very familiar with LDOS 5.x), don't
buy LS-OOS 6.x for the 2/12. TRSDOS 6,x
Owner/Technical manuals should be
purchased from Radio Shack for use with
this system.

LOOS and LS-OOS Information

I
.....l

J
l
I

_J

I
_J

J
J

I

J
I

J

J
i

_J

J
J
J

I
_J

I
_j

J
I

_J

J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

Most programs that run under TRSDOS 6.x
will run under LS-DOS 6.x. Of course, any
programs (such as superSCRIPSIT) which
directly access the hardware of the Model
4, or otherwise violate the DOS interface
conventions will not run~ LS-DOS 6.x is
intended to provide a Model 4 environment
only. There is no support for any Model
2/12 TRSDOS functions (such as TRSDOS
1.2a, 2.0a, or 4.x). There are slight
differences in keyboard and video
handling, due to hardware differences on
the Model 2/12. Model 4 graphics
characters are not available. Reverse
video is supported. Details regarding
keyboard mapping are supplied with the
system.

If you want to purchase a copy of LS-DOS
6.x Operating System for your Model 2/12,
remit $49.95 + $3S&H (US). If you enclose
an original TRSDOS 6.2 (or later) diskette
as proof of purchase, we will place a copy
of Model 4 TRSDOS 6 BASIC 01.01.00 onto
your LS-DOS master diskette. For an
additional $39.95 per system, we will
include the driver and formatter for the
Radio/Shack 12 and/or 15 Meg hard disk
drives - the Radio Shack 8 Meg drive is
not supported.

DOSPLUS4 Incompatibility note

We have received a few queries as to why
some of our Model 4 products cause
DOSPLUS-IV to "hang" upon program exit.
This occurs in programs such as LC, MC,
and most of our utilities designed to run
like DOS LIBrary programs. Here's the
answer. First let me say that the problem
experienced using LC under DOS PLUS IV is
certainly NOT a bug in LC but rather a bug
in OOSPLUS. Page 227 of the Model 4
Technical Reference Manual sold by Tandy
Corp (this is the manual which defines the
Model 4 hardware and the technical
interfacing to TRSDOS 6) states that a
program may exit via one of three
procedures; SVC-@ABORT, SVC-@EXIT, or by a
RET instruction. The latter is used by
PRO-LC since the system stack is properly
maintained.

There is a reason for the use of RET over
@EXIT. Any program can invoke any other
program via the @CMNDR SVC provided they

LOOS and LS-DOS Information - 13 -

honor each other's memory utilization. If
a program wants to invoke another and have
the subsidiary program return to the
invoking program, the subsidiary must use
RET to exit (or the primary must take
control over the @EXIT SVC). OOSPLUS does
not support a RET from a program because
it doesn't place the @EXIT address on the
stack prior to passing control to a
program invoked via @CMD or @CMNDI.

Moving a Hard Drive's directory

One LDOS MAX80 user with a hard drive had
a problem when the default directory track
was bad on his drive. The HDCHECK utility
provided with the M80RD package can lock
out a bad track only after the directory
file has been written to the disk - sort
of a catch-22. Here's a solution.

It is true that RDCHECK cannot lockout a
bad directory track since locking out is
achieved by setting allocation bits in the
GAT - which is in the directory itself. If
the directory track is bad, it is too late
for RDCHECK.

You can establish the directory on a
different cylinder by changing the
"directory cylinder" byte in the Drive
Control Table (DCT) for the drive in
question after FORMATing with M80FORM but
prior to adding the system information via
FORMAT. The DCT•s start at address X'4700'
and occupy 10 bytes per logical drive
(i.e. logical drive O = X'4700', logical
drive 1 = X'470A', etc.) The tenth byte of
each DCT points to the directory cylinder
for its respective logical drive. For the
drives which you are having problems with,
decrease the value by 2. The DEBUG module
can be used for this. This operation would
need to be done anytime that you reformat
the hard drive.

SYSGEN the CLOCK under LOOS 5.1.4

If you wish to be able to SYSGEN the CLOCK
under LDOS 5.1.4, apply the following
patch:

PATCH ·SYS7/SYS.SYSTEM (D08,C8=01 00 10 42)

As an aside, LSI's patch to SYSO/SYS which

LOOS and LS-OOS Information

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

allowed LOOS to always
on a Model 4 provided
SLOW. If you wish
capability of SYSGENing
the patch:

BOOT in FAST speed
no way to· SYSGEN
to restore the
SLOW/FAST, apply

PATCH SYSO/SYS.SYSTEM (DOD,20=38).

The LOOS and TRSDOS6 systems inhibit the
generation of a configuration file if the
spooler is active. This is by design, not
oversight.

LOOS 5.x SVCs and whatnot

All SVC's supported under LOOS 5 work
under TRSDOS 6 with the exception of HIGH$
- which has a slightly different protocol.
TRSDOS 6 includes many SVC's not included
under LOOS 5. I would not recommend one
program to run under both versions unless
the program took great pains to adapt
itself to the DOS it was running under.
That, of course, limits its execution to
>5200H - not too useful on the Model 4.

While we're on the subject of SVCs, Rob
Healey recently reported the following.
"My copy of LOOS 5. 1. 4 dated 8/5/84 has a
bug in the SVC table. The SVC dealing with
setting HIGH$ is set up incorrectly. I
patched SYS7/SYS with FED to fix the
problem. The address was off by one. I
don't know if this bug has been recorded
or not but I figured since you will be
making a new update soon, it would be a
good time to fix it if it hasn't been
already." Rob went on to supply the Model
III patch. I checked out his report and he
was right! Just shows you how many people
are using the optional SVC table under
LOOS 5.1! Anyway, here's Rob's patch as
well as one for LOOS 5.1.4 Model I.

I -> PATCH SYS7/SYS.SYSTEM (D0F,56=4A)
III-> PATCH SYS7/SYS.SYSTEM (Dl0,88=4A)

Caution for Directory tinkerers

Here's a programming note which addresses
an obscure quirk of both LOOS and TRSDOS.
It's associated with a rare form of
directory access. I resolved an obscure
problem with my DESCRIBE package that I
thought I would share with you in case the

LOOS and LS-DOS Information - 14 -

issue ever comes up with another LDOS or
TRSDOS 6 user. My DESCRIBE program adds a
descriptor field to the directory. I have
introduced a few tricks that permit it to
function without conflict with other
programs that may access the directory.
You will need to understand a little of
how I interface DESCRIBE before you can
appreciate the "bug".

DESCRIBE associates a 64-byte record to
each usable HIT entry in the directory. I
extend the directory by first calculating
the proper ERN for DIR/SYS and update the
directory filling extents 2-4 with
X'FF's. I do this because the ERN is
miscalculated by FORMAT in all cases where
the cylinder exceeds 34 sectors and is
grossly in error when a cylinder is 256
sectors (the ERN shows up as zero). I next
set the CREATE bit and show the remainder
of the directory cylinder allocated in the
first extent of the DIR/SYS directory
record. Thus, on a drive with a cylinder
larger than the actual directory, I can
make use of the wasted space. I proceed to
open the DIR/SYS file for reading. I use
the FORCE-TO-READ flag and the "master
open" scheme under TRSDOS 6.x and the
master password under 5.x. I then force
write access by adjusting the open FCB. I
then proceed to write out the 64-byte
extensions via sector writes (@WRITE). One
byte is storage for a copy of the DEC for
a file. The remaining 63 bytes are for the
description information. This then
allocates the extra space needed by the
directory descriptors. This process is
performed for the CREATE command of
DESCRIBE which then cycles to read the
descriptor extension. When the user wishes
to physically update changes to the
descriptors, the extension is written back
to disk but the DIR/SYS entry's ERN is
reset to the value for the directory
records only. Thus, other programs which
access the directory get an EOF when they
read the last system sector. Also, the DOS
doesn't deallocate my space since the
create bit is set. I don't CLOSE the
directory so no date is added. The only
visible indication of the extension is the
"C" showing up in a DIR (I).

I had received a problem
customers trying to use
Tandy 15 Meg hard drive.

report from two
DESCRIBE with a
In both a one-

LOOS and LS-DOS Information

I
..J

j
I

J

I
_J

J
J

J
I

.....J

t
I

-l

J
J

J
J
I _,

J
J
J
_I

J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

head logical drive and a two-head logical
drive, the customer gets an "Attempt to
read system data record" error. I checked
my code and could not understand where
this error could materialize. My 5-meg VR
Data drive would be the same configuration
as a one or two head Tandy 15-Meg
partition. I checked out DESCRIBE on my
drive. Thus, my drive was one head with
306 physical cylinders. This is organized
exactly like the Tandy 15-Meg with a one
head partition. It worked flawlessly. I
had one of my customers debug the problem
with me on the phone reporting where to
put breakpoints in the DESCRIBE's creation
routine. The error 6 was returned after
the first @WRITE (SVC 75). I began to
suspect something funny in the hard disk
driver for the Tandy drive. If the driver
made the GOmparison on directory cylinder
for both read and write, then an error 6
would result on write •

I disassembled the driver and could not
see anything funny with it. I double
checked the @READ system code and
specifically saw the trap for passing an
error-6 as no error. After spending some
time thinking over the problem, I
pinpointed where I was going wrong. I then
checked the system code for @WRITE with
VERIFY turned on. This was the culprit. If
VERIFY is on, an @WRITE is followed up by
·a VERSEC. The VERSEC does not pass through
any code to trap an error-6. Thus, when
the hard disk driver gets the VERSEC
function, it makes the directory cylinder
comparison and will return the error-6 if
the @VERSEC was to the directory. My flaw
was in forgetting that a hard drive with a
cylinder larger than the directory would
then have @WRITEs performed on the
directory cylinder and if VERIFY was on
which is the default of TRSDOS 6, it would
return the error. This could not happen
with a floppy since the @WRITE would
generate the data sector DAM. This is not
the case with @WRITE an a hard drive. I
didn't experience the problem since I
don't run with VERIFY on.

I'm not sure that I can fault the DOS
since the directory DAM is simulated on
the hard drive. Also, it would be unusual
to expect a system data record to be
accessed via @WRITE and not @WRSSC. Thus,
this quirk should not indicate any request

LOOS and LS-OOS Information - 15 -

for future changes to the DOS. I worked up
a patch to DESCRIBE to deal with the
possible error-6 return from @WRITE. I
thought that the scenario may prove
educational for you.

Am I at OOS Ready?

Bob Kaye asked, "Is there any FLAG that I
can check to see if the CPU is at TRSDOS
Ready?" Bob, As a matter of fact, if you
have a filter in the keyboard device, when
the command interpreter is awaiting an
input, the CFLAG$ will have bit-2 set.
This will be an indicator that the DOS is
at DOS Ready. -Roy

FORMAT bug with 2-sided drives

There is a bug in all current releases of
LOOS 5.1 and TRSDOS 6.2 which causes the
formatting of a 2-sided disk to fail under
one situation. If you attempt to format
both sides of a NEVER-FORMATTED disk (in a
2-headed drive) and the last access of
that drive was on the second side of the
previously loaded diskette, FORMAT will
lockout track 0 and won't permit the disk
to be used (can't put BOOT/SYS anywhere
else). The reason is due to a bug in
FORMAT which does not reset the side
select bit in the Drive Control Table for
that drive prior to initiating the
formatting. Thus, the formatting
information for side 0 of track 0 actually
gets written to the second side; result,
the first side of track 0 is not formatted
(unless, of course, the disk had been
previously formatted). The fix for LDOS
5.1.4 (Model I and III) is in the PATCH
section. The fix for TRSDOS 6.2.1 is also
there.

Add @VDPRT SVC to TRSDOS 6.2

Here's something that a few folks have
asked for over the past years(?). You all
know that you can do a screen print with
<CTL-:> under TRSDOS 6.2; however, a few
wanted that capability as an SVC so that
it could be invoked under program control.
Well,·· here is a little patch to do just
that. This alteration to TRSDOS 6.2 adds
SVC #107, @VDPRT. It is official as I

LOOS and LS-OOS Information

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

requested Logical
with Release 6.3

Systems
to be

year. Here's the patch:

PATCH SYS0/SYS.LSIDOS

to
out

(D08,78=35 09:F08,78=F4 IA)

DIRectory command defaults

include it
early next

This comes under the department of you
can't please all of the people all of the
time. The TRSDOS 6 DIR command was
designed to have the "A" parameter default
to ON so that you would see all of the
available information on files. This
default was changed from OFF to ON with
the 5.1 release of LOOS. Now some folks
complained about that change. Here is the
little patch to change Model I AND MODEL
III LOOS 5.1.4's default back to OFF:

PATCH SYS6/SYS.SYSTEM
(D05,D9=00 00)

Under TRSDOS 6, the CAT command will be
somewhat equivalent in/ operation;
however, if you still care to alter the
default of "A", it can be done. An
appropriate patch to TRSDOS 6.2.X for the
same change is

PATCH SYS6/SYS.LSIDOS
(D07,DB=00 00:F07,DB=FF FF)

Add 2-Side prompt to TRSDOS 6.2.x FORMAT

If you are using 2-sided floppy drives and
wish to have FORMAT prompt you for the
number of sides (as is done in LOOS)
rather than have to specify (SIDES=2) on
the command line, just apply the following
patch to SYSO/SYS of TRSDOS 6.2:

PATCH SYS0/SYS.LSIDOS
(D00,81=11:F00,81=31)

DOS Notes from our Compuserve SIG

#: 64158 ll-Apr-86 02:42:09
Fm: Harmon Ruble 70150,310
To: LOOS support

Problem •••• Harddisk crash ••• Reading in
from floppies and get parity error during

LOOS and LS-DOS Information - 16 -

read and all stops. I
can fix or delete the
do I make it keep on
of the files. Harmon

need those files and
one that is bad. How

dumping in the rest

#: 64159 ll-Apr-86 04:29:53
Fm: Gary Bender 70375,1070
To: Harmon Ruble 70150,310

Harmon, if the error is in the file (and
not the directory) you might try making
the file invisible with the ATTRIB command
before doing the backup. That way you do
not have to delete it, so you can go back
later and maybe try to fix it. Do a$/$
backup so BACKUP does not try to copy INV
and SYS files. Don't be surprised if other
files show up bad as you go. Disk faults
often cover several tracks, and
LDOS/TRSOOS could have extents from
several files in the bad area.

#: 64381 19-Apr-86 00:25:55
Sb: RTC speed fix
Fm: Joe Sare 72667,3124

For those of you who are running model 3
software on a model 4, and use the 4 meg
clock speed there is a program I uploaded
to DL0 that will correct the speed of the
real time clock when running at 4 meg in
model 3 mode. This program also allows you
to disable the RTC, or the system task
routines individually or in combination.
There is an LOOS patch required to make
SYSTEM(FAST) work on the model 4 hardware.
If anyone needs this patch, or more
information on fixclock, contact me on E
mail - 72667,3124.

#: 64457 21-Apr-86 16:32:36
Sb: #64300-#Interrupt headaches!
Fm: LOOS Support 76703,437

[TRSDOS 6. 2 incorporated a "SYSTEM
(SMOOTH)" command which forced the floppy
disk driver to turn off interrupts
earlier. This resulted in less throughput
problems when a disk drive's rotational
speed was precisely 300 RPM. The side
effect was that you could no longer type
during disk I/0. -ed] The equivalent of
the SYSTEM (SMOOTH) function for LOOS
5.1.4 (Model III) was published in the LSI
Journal. Here it is: PATCH SYSO/SYS.SYSTEM
(D05,5B=F3) --jjkd--

LOOS and LS-DOS Information

j
....J

J
I

_J

I __,

J
i

....J

J

J
J
J
J

I
_J

J
J

I
I

_J

J
J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

#: 65093 09-May-86 15:09:24
Sb: #65074-Format problems
Fm: LOOS Support 76703,437

and TRSOOS 6 has FORMAT under LOOS
traditionally used the
format data pattern.
bit pattern to write
density. Some folks
which is worst case
but is very easy in

"worst-case" 6D B6
This is the hardest

and read in double
use the pattern ES,
for single density,

double density.

I can't count the number of times that
people have called me with problems under
LOOS or TRSDOS 6, but "knew" that their
hardware was OK 'cause it worked with
"another" OS. In the vast majority of the
cases the errors didn't occur either
because the "working" software "coddled"
the hardware by using an "easy" format
pattern (leaving the errors to blast real
data that is "tougher" later), or just
plain didn't catch the error!

#: 65085 09-May-86 11:07:12
Sb: #65054-Format problems
Fm: LOOS Support 76703,437

If it is significantly easier to re-format
an already formatted disk, as compared to
a bulk-erased disk, and this is repeatable
for a given disk, it generally indicates
one of two problems: (1) Poor head write
amplitude, (2) insufficient head
compliance. The first is a hardware
problem that very little can be done
about, as the most common problem is a bad
head. Fixable electronic causes exist
also, but are much less common. The second
is generally due to insufficient pressure
of the head on the diskette. This can be
caused by a bad/weak head spring, warped
carriage assembly or drive, bad, worn or
missing pressure pad in a single sided
drive, etc.

For years, I've fixed these things in
addition to building them and programming
them. I've never seen a software only disk
analyzer that was worth the media it's
supplied on, with the exception of
measuring drive rotational speed. That can
be done via software only with good
reliability if care is taken in its use.
The new Dysan Digital alignment disk and
supporting software is not as bad as it's
predecessors, but I don't believe that

LOOS and LS-DOS Information - 17 -

it's available
can't match a
'scope, DVM and

for the TRS-80. It still
good tech equipped with
brains. --jjkd--

#: 65370 16-May-86 01:00:30
Sb: #DOS error message mixup
Fm: Nate Salsbury 72167,1750

Joe, I'm running MC. I have a SYSTEM/JCL
on Drive O and the 'working' JCL (called
MC/JCL) on drive 1. For obscure reasons, I
put a write-protect patch on my Drive 0
disk. When I tried, 'DO MC (N=progname)',
I got an error message saying, "Illegal
access attempted to protected file!" After
a LOT of fiddling with LS-FED-II, I
stumbled on the write-protect tab and, as
soon as I removed it, all went smoothly.
Question: Why did I get THAT message
instead of "Write protected disk"?

#: 65376 16-May-86 21:15:16
Sb: #65370-00S error message mixup
Fm: LOOS Support 76703,437

SYSTEM/JCL was successfully opened on
drive zero, even though it was write
protected. Since the drive was write
protected, the file was given read-only
status. A further attempt to write to this
file results in the "Illegal access
attempted to protected file" error. To
distinguish "'"why* the file is protected
requires additonal processing, and most
utilities don't. The file could have
"protected" status due to password
protection, being open for write access by
another process, being on a write
protected disk (in this case), etc.
jjkd-

#: 65482 20-May-86 18:42:44
Sb: TRSOOS 6.2 vs LOOS 5.1.4
Fm: Bruce Travers 72215,1272

I have converted several model 3 LDOS
programs to model 4 TRSDOS by replacing
the CALLed routines with the appropriate
SVCs. There seems to be quite a few
programs that run MUCH slower under 6.2
than they do under 5.1.4., most noticably
during disk I/0. A good example of this is
the CMDFILE program that comes with LDOS.
I find that it takes 5-10 seconds between
block·loads from a HARD DISK, yet it takes
less than a second per block on 5.1.4. Any
ideas?? Is there a patch that I am

LOOS and LS-DOS Information

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

missing? It's a shame to go to all the
work of converting some useful programs
only to find that it would be faster to
boot up LOOS, use the program and return
to TRSDOS. Thanks in advance for any
suggestions. - Bruce

re: A given program running under LOOS
(FAST mode) on a Model 4 will ALWAYS run
much faster than the same program running
in Model 4 mode. That's because of the
huge amount of background tasking being
done in the Model 4 mode. LOOS doesn't
have to do memory management like TRSDOS 6
does. My guess is that 25% of the Model 4
processor is spent on things such as
keyboard scanning, cursor blinking, time
clock counting, bank switching,
video/keyboard memory management, etc. The
faster clock speed of the Model 4 was
supposed to account for this extra memory
management as well as up the processing
speed; however, when you go back to the
Model III mode and use the faster speed,
you have essentially boosted the
performance of the Model III. Note also
that there are differences in the sector
interleave formatted under LDOS versus
TRSDOS6. Using a disk formatted by LDOS
but used by TRSDOS6 may in fact require
more rotations to read an entire track of
sectors. -Roy

#: 65633 25-May-86 12:50:06
Sb: directory errors
Fm: ROBERT L, BABER 74076,1236

Using LOOS 5.1.4 on the trs-80 model 1, I
have experienced directory errors. The
only manifestation I have observed is
error messages when checking the directory
with the DIRCHECK program. I suspect that
the trouble might be caused by the RENAME
command. Apparently, it does not update
the HIT entry for extended directory
records. Please advise if a correction is
necessary and/or desirable.

#: 65651 25-May-86 23:01:27
Sb: #65634-message no. 65633
Fm: LOOS Support 76703,437
To: ROBERT L. BABER 74076,1236 (X)

What is the exact error message? I am not
aware of any HIT problems with FXDE's. If
the problem is a bad backwards FXDE
pointer/link, this is a known problem with

LOOS and LS-DOS Information - 18 -

BACKUP clearing a non-existent MOD flag on
an FXDE. Since this link is never used by
anything other than DIR checking programs,
it is not a bad problem. It will likely be
fixed in the next go-round. --jjkd--

#: 65680 26-May-86 10:41:16
Sb: message 65651
Fm: ROBERT L. BABER 74076,1236

The exact error message from DIRCHECK was:
Incorrect hash code at HIT X'l7', should
be X'60' When I rename a file covering 5
or more extents and then run DIRCHECK,
this type of error message appears. If I
respond to DIRCHECK that it should not fix
the directory and then subsequently rename
the file back to its original name, and
then run DIRCHECK again, the error message
does not appear. I suspect that rename
stores the new hash code in the HIT entry
for the primary directory record, but not
in the HIT entry/entries for extended
directory record(s). [It turns out that
@RENAME does indeed NOT alter the hash
index table position for any FXDE in use
by a renamed file. This in no way inhibits
any access of the file. That entry can
just as well be any non-zero value. Of
course, since it is set to the original
hashed file name/ext, it would be nice to
have it altered consistently by @RENAME.
Looking at the TRSDOS6 overlay which
handles @RENAME, there is no room to add
such "beautifying" but functionally
unnecessary code. -Roy]

LOOS obscure overlay problem

The next few messages relate to an obscure
problem in LDOS 5.x. The problem arises
under any condition where device output
has been routed to a disk file which must
be extended in size by SYS8 while the
character output is coming from another
system overlay. Since the requsting
overlay has been overwritten by SYS8, when
the device handler returns, it returns to
SYS8 rather than to the overlay which was
in the overlay region prior to SYS8's
being invoked. The problem is obscure
because you rarely build an environment
which creates this scenario. Routing the
device to a CREATEd file, will eliminate
the possibility for error as the disk file
would then need no size extension. The
problem does not exist in TRSDOS 6.x as

LOOS and LS-DOS Information

J
J

I
_J

I

J

J
I

..J

J
i

J

!
J

J
I

J
J

I

J
I

_J

i
J

J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

the file I/0 extender routine was moved to
the resident portion of SYSO/SYS, SYSRES.

#: 65819 S3/Mod 4/4P TRSDOS 6
86 23:27:58 Sb: DOS Overlay
Les Mikesell 70010,266 To:
74126,2244 (X)

28-May-
problem Fm:
Adam Rubin

The overlay problem in LOOS would show up
if output generated from an overlay (LOOS
Ready from SYSl or perhaps a DEBUG screen)
is redirected to disk and comes at a time
when SYS8 must be invoked to allocate disk
space. The fact that no one has noticed
this says something about how often device
redirection is used ••••

#: 65914 S3/Mod 4/4P TRSDOS 6
31-May-86 16:02:09

Sb: DOS Overlay problem
Fm: Tim Mann 70040,504

Grumph. Unless you've fixed it since I
worked for LSI, what Les described is a
real bug too. Try linking *DO to a disk
file and running the debugger for a while.
When the disk file needs another extent,
SYS8 will be pulled in and clobber SYS5.
Then when the i/o routines try to return
to the code in SYS5 that called them, the
SYS8 code will be there instead and the
system will crash. --Tim [Note, this bug
is inherent in LOOS, not TRSDOS 6 -ed]

(RE) Yes, Tim. That sounds like a bug,
too. Truth is, I can't remember doing much
routing of the *DO device to a disk file
then using the debugger. Actually, when I
had to do some heavy debugging, I usually
used my special debugger which was a
SYS5/SYS9 module which relocated itself to
high memory and did not operate from the
overlay area. I don't think that Bill will
fix that bug in 6.3. I can't get too
excited over it for 5.3, either .since low
memory is too critical for other things. -
Roy

#: 65942 Ol-Jun-86 15:22:17
Sb: DOS Overlay problem
Fm: T. Lee Horne, III 70115,207

When the IRS wanted log time for my
computer I tried *JL and trashed my system
several times. I wrote LOOS then and they
sent me a letter with this same
information. Essentially, don't use *JL or

LOOS and LS-DOS Information - 19 -

you risk trashing
loosing data. - Lee

your directory and

(RE) Ah, but if you route
file, then you should be
course, that issue is moot
-Roy

#: 66012 02-Jun-86 22:47:32
Sb: DOS Overlay problem
Fm: Les Mikesell 70010,266

it to a CREATEd
home free. Of

now, isn't it?

To: T. Lee Horne, III 70115,207 (X)

Not quite; You can use *JL safely as long
as it is sent to a DEVICE, not a disk
file. Also, this should not be a problem
under 6.x since the function of LDOS SYS8
was moved to SYSO and is always resident.
-Les

#: 65965 02-Jun-86 00:48:15
Sb: DOS Overlay problem
Fm: John Garner 72457,1613

Don't forget that this can
with ZSHELL as described in
"Notes" ••• - John

also happen
Issue 3 of

(RE) I didn't forget about ZSHELL. I just.
didn't want to stir up too many waters.
Why do you think I spent the effort to
make the "SYS8" LOOS code resident in
TRSOOS 6? And somebody even suggested that
TRSOOS 6.3 could gain resident memory
space by shifting that code back into an
overlay!!!!! -Roy

#: 66009 02-Jun-86 22:46:56
Sb: DOS Overlay problem
Fm: Les Mikesell 70010,266

No, I'm sure that I have run into the SYS
file conflict without involving JOBLOG at
all. I think the first time it happened, I
had ROUTED *PR to a disk file and was
using DEBUG, trying to use screen prints
to capture certain areas of a program. It
probably will happen anytime output from
any overlay is redirected to disk and
invokes SYS8. Or, as in my example, when
INPUT to a overlay invokes something that
generates the output. - Les

#: 66285 09-Jun-86 01:18:20
Sb: Using HD on LDOS & TRSOOS 6
Fm: John Garner 72457,1613

LOOS and LS-DOS Information

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

Yes, it can be done. I presume your hard
disk does in fact have four heads. You
also must have the appropriate drivers for
both LOOS and TRSDOS. If you have a Radio
Shack HD, the TRSDOS drivers come with it.
At any rate, the general procedure would
be:

(1) Boot with TRSDOS. Use a command like:
SYSTEM (DRIVE=l, DISABLE, DRIVER="TRSHD6")
NOTE: The driver must be on the disk in
drive :0.

(2) Answer the questions the driver asks.
Answer "How many heads •• " with 11 111 and
"Starting head ••• " with 2 (assuming heads
are numbered 1-4).

(3) Repeat this for DRIVE=2 and use a
starting head of 3.

(4) Repeat for DRIVE=3 and use a starting
head of 1.

(5) Use SYSTEM (DRIVE=4,DRIVER="FLOPPY")
to access the other floppy drive. Its
physical driver number is 2.

(6) Use the hard disk formatter to format
each of the the 3 partitions (drives 1, 2,
and 3).

(7) BACKUP /SYS:0 :3 (SYS) to copy TRSDOS
onto the hard disk.

(8) Make the hard disk the system disk
with SYSTEM (SYSTEM=3). This will also
make the left-hand (or lower, forgot what
model) floppy drive :3.

(9) SYSGEN (DRIVE=3)
configuration. (Forgot to
floppy drive should be
hard disk init disk.)

to save the
mention: disk in
a backup of the

(10) Boot LOOS. Use a command like: SYSTEM
(DRIVE=3, DISABLE, DRIVER="TRSHDx") Answer
the questions as before, except the
starting head will be 4.

(11) Format the hard disk partition with
the LOOS hard disk formatter.

(12) Install LOOS on the hard disk with
BACKUP :0 :3 (SYS,INV).

(13) Issue the following commands:

LOOS and LS-DOS Information - 20 -

SYSTEM (DRIVE=l,DISABLE)
SYSTEM (DRIVE=2,DISABLE)
SYSTEM (DRIVE=4, DRIVER="MOD3")

and answer the prompt with "2";
SYSTEM (SYSTEM=3)

The effect of all this is to make the
floppies drives 3 and 4 (just like under
TRSDOS). It has been my personal
experience that less confusion will result
if the floppies are always the same drive
number. The fact that drives 1 and 2 are
disabled under LOOS is of no problem.

(14) Save the configuration by typing the
following:

SYSTEM (SYSGEN)
COPY CONFIG/SYS.CCC:0 :3.

I have left out a few details, like copy
the rest of the TRSDOS stuff onto the hard
disk, etc. Also, if you are using
something other than R/S hard disk and
drivers, some of the steps may be somewhat
different. Hope this was of some help to
you. - John

#: 67126 04-Jul-86 11:51:15
Sb: #67097-MOVING FILES
Fm: LDOS Support 76703,437

Files may be moved from NEWDOS to LDOS in
the following manner:

1) Format a disk under LDOS with the
parameters necessary to make a thirty-five
track, single density, single sided disk
with a single track directory (this is
also the Model 1 TRSDOS 2.3 structure).

2) Copy the files to this disk under
NEWDOS.

3) Re-boot under LOOS. LDOS should now be
able to directly read this disk. If also
going from Model 1 to Model 3, you may
need to use the LDOS "REPAIR : n (ALIEN) 11

command on the disk before reading.

Note that if you have PowerSoft's Super
Utility Plus, it will move files directly
between some NEWDOS formats and all LOOS
formats. --jjkd--

(RE): MI SO SYS al so has a CONVDOS program
available on DISKNOTES3 (available for $10
+S&H) which can "convert" files off of a
NEWDOS80 double density system disk. -Roy

LOOS and LS-DOS I~formation

I
_J

J
J
J
J
I,

J
l

...J

J
I

I
_J

J
I
)

_J

I
I

_.J

J
I

.....J

J
J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

Assembly Language: EDAS & MRAS

On page 42, line 18340, of THE SOURCE,
Volume I - The System, there is an
instruction which cannot be assembled by
EDAS 4.3 or MR.AS. The "LD HL,CRTEND+l<" is
an error in THE SOURCE. The reason that
EDAS 4.1 did not flag it as an error is
that it never flagged errors where an
assumed term from an expression was
omitted. Thus, it passed such things as
"LO A,(IX+)" where the right hand term of
the "+" was omitted. In THE SOURCE' s
example, the ending "<" is a shift
operator which should have a right hand
term. The EDAS 4.3 assembler flags this as
an expression error since it does not want
to assume that you meant to either drop
the"<" or add a "O" shift operand. In
other words, it flagged a legitimate error
in the source code.

Certain coding conventions permitted in
absolute code generating assemblers (such
as EDAS and PRO-CREATE) will not be
acceptable in relocatable code generating
assemblers (such as MRAS and PRO-MRAS). In
particular, it is important to pay close
attention to the side effects of
expressions. When assembled by MR.AS, a
code fragment such as:

SLASH
OLDHI

MODDCB

JR START
ow $-$
DB MODDCB-SLASH-5
DB I SLASHO'
ow$-$

will produce many "Multiple definition"
errors which are difficult to understand
by most folks. It is caused by a phase
error. A phase error occurs when the
address of a label differs between
assembler passes. The reason for it in
this case may not be too obvious.

Here is the reason for the "strange"
behaviour. Let's look at the above code on
assembler pass one. At the evaluati~n of
the expression in the third statement, the
MODDCB symbol is not yet defined; thus, it
evaluates to absolute zero - all undefined
symbols are considered absolute! The
"SLASH" symbol is code relative. On page
2-15 under the rules for evaluation of
expressions involving subtraction,

The Tower of Babel - 21 -

"absolute - relative" is invalid. That
means that the assembler generated a
relocation reference error and did not
assemble the DB instruction; however,
error messages are only displayed during
the listing pass, pass two.

On pass two, the MODDCB symbol is defined
as code relative; the subtraction rules
permit the expression to be evaluated
without error as both of the symbols are
defined as code relative. The subtraction
of two code relatives results in an
absolute - which is acceptable. Therefore,
no error exists on the second pass for
that statement and it assembles to a byte
value. Unfortunately, since the DB
instruction had not been assembled on the
first pass, the location counter differs
on the second pass. The difference between
pass 1 and 2 is one byte which thusly
multiply defines all symbols which follow
that statement.

The solution is to NEVER code an
expression which involves a relative
symbol unless it adheres to the rules
noted on page 2-15. The alternative, which
is one that should be followed when no
"relocatable" facilities are needed, is to
use the '-GC' command line switch to
direct MRAS to directly generate an
executable command file or use the ASEG
and ORG assembler pseudo-OPs to specify
the module as being an absolute segment.
The code fragment came from a filter which
is not one which requires relocation nor
was it coded to permit it to be assembled
by a relocatable code generating
assembler. With the "-GC" switch, MRAS
correctly assembles a file coded to be
assembled by an absolute code generating
assembler (such as our PRO-CREATE
product).

I investigated the result of modifying
MR.AS to keep a "relocation reference
error" as a "warning" error and not a
"fatal" error. This would have the effect
of keeping the byte assembled so a phase
error would not result - in this case. On
the other hand, a negative side effect
would generate a bad link file if there
was a. legitimate relocation reference
error.·

The Tower of Babel

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

Let me clear up some confusion about our
MRAS product and its advertised
compatibility with Microsoft's M-80.
According to our catalog, MRAS generates
M-80 compatible link files. There is no
claim that MRAS is 100% cross compatible
with M80/L80. MRAS cannot link the output
of BASCOM because MRAS does not support
the "chain address" special link item
(SLI). That SLI is 12, which is excluded
from our list. Such an SLI is only needed
in connection with a one-pass compiler
which directly generates relocatable
object modules (such as FORTRAN, BASCOM,
and COBOL). On the other hand, I have been
contemplating upgrading our linker to
support "chain address" in response to
requests from some of our customers who
desire to use our linker with Microsoft's
language products. When we enhance our
MLINK linker to support chain address, we
will notify our customers as to the
upgrade policy.

Some users want to use our MLIB librarian
with Microsoft's libraries and run into
trouble. The problem with the BASRUN/REL
library was that it did not have a proper
end of file pointer in the directory. Once
I corrected that, I was able to properly
read the library into MLIB. The same thing
was true of GRPLIB/REL; it's directory
entry EOF pointer was wrong and needed
correction. The problem with those
libraries is that the EOF pointer must be
pointing to a byte which is of the value,
X'9E'. BASCOM/REL is too large to fit into
MLIB's buffer; thus, it cannot be operated
on by MLIB.

BASIC: EnhComp

As you may be aware from both our
advertising in 80 MICROCOMPUTING and the
last miniNOTES flyer, MISOSYS released a
new BASIC compiler. We have recently
upgraded it to version 2.4 to correct some
bugs which slipped by in the 2.3 release.
We're pretty excited about this compiler.
It was originally written by Phil Oliver
who some may know as the author of EnhBas
- an add-on extension to the Model III
BASIC interpreter as well as that old
favorite of gamesters, Scarfman. We spent
a lot of time cleaning up the code, fixing

The Tower of Babel - 22 -

bugs, and porting it over
native mode (i.e. a Model
Model 4 under TRSDOS 6).
few enhancements.

to the Model 4
4 running as a

We also added a

Okay, why come out with a new BASIC
compiler for the Model I/III and 4 at this
late date? The reason was that its unique
operating environment and supported
assembler interface demanded that it be
made available to the BASIC programming
community. The first "feature" is one of
the programming environment. The typical
compiler environment requires this
scenario. Load an editor then load or
input source code. Save the code to disk
then exit the editor. Invoke the compiler
to produce the "/CMD" program [some
compiling environments utilize separate
compilation, assembling, and linking
phases]. Run the program to test it. Then
repeat this cycle. The EnhComp environment
starts with you invoking a supervisor
program, S/CMD. S loads the editor. You
then either load or input the source. Type
"RUN" and the supervisor then takes
control. It first saves your source to a
temporary file, TEMP/BAS. It instructs the
compiler to compile your source program to
a temporary file, "TEMP/CMD". Next, this
CMD file is run for testing. When it
completes, S regains control, reloads the
editor, which reloads your source file. If
anything went wrong during the compile or
program run (short of a program CRASH), S
would still regain control and complete
its cycle. Note how this saves you from
having to type in all of the iterative
program development commands.

The second "feature" is the convenience
and flexibility of a built-in Z80
assembler. This is not just a rudimentary
facility of allowing you to set up DATA
values which represent Z80 machine
instructions, this is a complete
assembler. For instance, check out this
little Model 4 BASIC program!

DIM VIDE0%(960)
FOR X = 0 TO 255
%FILL(X,VARPTR(VIDE0%(0)))
NEXT: END
COMMAND FILL(X%,V%)
Z80-MODE
LD A,(&(X%)):LD HL,(&(V%)):LD (HL),A
PUSH HL:LD D,H:LD E,L:INC DE:LD BC,1919

The Tower of Babel

I

J

J
J
J

I

J

J
J
I

_j

J
J
J
J
I

_j

J

J
J
_j

i
_J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

LDIR: POP HL:LD A,15:LD B,5:RST 40:RET
HIGH-MODE: ENDCOM

First, note the absence of line numbers.
With EnhComp, they're not needed except
when you need to reference a line (i.e.
GOTO, GOSUB, etc.). You can also use
labels in lieu of line numbers if you so
choose. Second, note the assembler code
intermixed with the "high-level" BASIC.
Note in this assembler routine that it can
access BASIC's variables and you can also
put more than one assembler instruction on
a physical line - just like in BASIC! The
EnhComp "COMMAND" reserved word allows you
to add to BASIC's rep;rtoire of statements
- somewhat akin to FORTH's extensibility.

Now for those BASIC types who just want to
code in BASIC, how does this compiler's
dialect differ from that you may be used
to? To begin with, let me very clearly
state that there is no intention that this
compiler can directly compile any existing
BASIC program designed for your BASIC
interpreter. What the author of EnhComp
has tried to do is to provide you a set of
features that will nu.mic most of the
features of your interpretive BASIC. In
some cases, the mimicry has been perfect.
Well, the only legitimate basis of
comparison would be to use the BASIC
interpreter as a benchmark. On the Model I
and III environments, you compound the
comparison because of the preponderance of
different DOS vendftrs and differences in
the disk BASIC they provided. On the Model
4, there is only one - Microsoft's BASIC
as provided with TRSDOS 6. So lets take a
look at that one.

EnhComp supports unlimited length variable
names versus a maximum of 40 for MS.
String variables, on the other hand, can
be up to 32767 bytes in length with
EnhComp. EnhComp does not support EQV or
IMP, all other numeric and string
operations are supported. For sequential
files, EnhComp supports OPEN, PRINT#,
PRINT# USING, WRITE#, INPUT#, LINE INPUT#,
EOF, and CLOSE identically as Microsoft.
We consider LOC to be superfluous for
sequential files. For direct access "R"
files, EnhComp supports fielding and
access exactly like Microsoft. EnhComp
also supports a special "X" type of direct
access file which uses list-directed

The Tower of Babel - 23 -

fielding (i.e. XFIELD 1, VAR#, (32)VAR$,
BIG!, LITTLE%). The "X" type allows for
logical record lengths up to 32767!

For statements_,_ EnhComp does not support
CALL, COMMON, ERASE, OPTION BASE, CHAIN,
WHILE WEND, WAIT, DEFUSR, NAME, or SOUND,
On the other hand, EnhComp supports BKOFF
and BKON to disable/enable the BREAK key;
DRAW with ROT and SCALE for turtle-like
graphics; COMPL(), INVERT, PAINT(), PLOT,
RESET(), and SET() for pixel graphics;
COMMAND and ENDCOM to define extensions to
BASIC statements, INC and DEC to increment
and decrement integer variables; UP, DOWN,
LEFT, and RIGHT to scroll the video screen
in four directions; IF ELSE ENDIF
conditional construct; FUNCTION and
ENDFUNC for multi-line user functions;
labeled statements for readability;
INPUT@pos for better control of input
prompts; the ability to SORT arrays with
SCLEAR, KEY, TAG, and SORT; ON BREAK GOTO
address for programmer control over BREAK
key handling; POP to remove one level of
GOSUB; POSFIL to reposition sequential
files; a SYSTEM command which allows you
to invoke ANY command; PZONE and SZONE to
establish actual tab stops for printer and
video output used with PRINTing; REPEAT
and UNTIL for looping (similar to WHILE
WEND); and finally WPEEK and WPOKE for
easier memory access of 16-bit "words".
Note also that EnhComp's PRINT# statement
supports redirection to video, printer, or
disk file by the value of the buffer
number (-3 for printer, 0 for video, 1-n
for file).

EnhComp supports every Microsoft numeric
function; however, we also support double
precision arguments with DOUBLE PRECISION
results. That includes ABS, ATN, COS, EXP,
LOG, SIN, SQR, and TAN, The "EXISTS"
function can be used to check if a
particular file is available before you
proceed to OPEN it. We don't support
ERRS$, INPUT$, or SPACE$ (which can be
derived from STRING$) but we do add BIN$
and WINKEY$ (which of course can be
derived from INKEY$). Note that EnhComp's
USING is actually a function which returns
a string value. This means that it can be
used by itself without a PRINT statement,
which·adds the flexibility of continued
processing of the formatted string by your
program before printing (perhaps like the

The Tower of Babel

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

sprintf() function of C) EnhComp does not
support SPC (again, this can be

_J!CComplished with STRING$ as EnhComp's
STRING$-- function uses no string buffer
space!).

Now chaining and commons - both used to
pass in-memory data from one program to
another - can be easily accomplished by
EnhComp. Since EnhComp allows you to
establish the origin of the compiled /CMD
program, simply set it to an address
higher than the default (5200H I/III or
2600H 4). Then use the region between the
base and your origin to poke the variable
contents which you want to pass from one
program to another. Since you can RUN a
compiled program from another, the poked
data can be easily peeked by the second
program. There, that's chaining and
common!

What more do you want? Okay, we have
received a request for a SETEOF statement
which allows you to reset the EOF pointer
of a random access file. We have also been
asked for support of the Tandy HIRES
graphics board. The former is very easy
compared to the latter. Here's an example
program illustrating an easy user command
designed to set the EOF of a random access
file.

COMMAND SETEOF(BUFNUM%)
IF NOT EOF(BUFNUM%)
Z80-MODE
LD HL,(&(BUFNUM%)):CALL @CALADR
LD A,(IX+l6+5):LD (IX+l6+8),A
LD A,(IX+16+10):LD (IX+l6+12),A
LD A,(IX+16+11):LD (IX+l6+13),A
HIGH-MODE
ENDIF
RETURN
ENDCOM
ALLOCATE 1
OPEN "R",l,"testfile/dat",32
FIELD 1,32 AS ARG$
FOR I = 1 TO 20
LSET ARG$="This is test "+STR$(I)
PUT 1 , I : NEXT
CLOSE 1
SYSTEM"List testfile/ dat (hex)"
OPEN "r",l,"TESTFILE/DAT",32
FIELD 1,32 AS ARG$
GET 1,10: PRINT ARG$
%SETEOF(1)
CLOSE 1

The Tower of Babel - 24 -

END"list testfile/ dat (hex)"

The BASIC supplied with LDOS documents the
operation of SETEOF conforming to the
manner in which I have used it in this
test program. The random file is
positioned to the last record desired by
means of a GET on that record. Then the
SETEOF [of course coded as %SETEOF(bufnum)
since EnhComp requires the "%" character
to indicate a user command] will set the
EOF pointers to the current record
pointers. The little Z80 routine does
that. "@CALADR" is a routine from the
EnhComp SUPPORT/DAT library which
calculates the address of a bufnum's file
buffer allocation (documented on page 5-2)
and returns the value in register IX. To
be fancy about it, the CF would be set on
return from @CALADR if the bufnum
referenced a file which was not already
open. Of course, under that case, nothing
damaging would result as the accessing of
the FCB region would be of unused memory
addresses. Make note that if the bufnum
exceeds the value established by ALLOCATE
(the maximum number of open files),
@CALADR would report a runtime error 104.

Now I can't pull an easy rabbit out of the
hat for HIRES graphics. However, the
simplicity of including assembly language
routines and the availability of public
domain HIRES libraries should enable some
dedicated graphics hackers to come up with
usable functions.

Where is MISOSYS taking EnhComp from here?
Well, to start, we are dedicated to
eliminating any other bug which becomes
documented. We are also making it known to
Phil Oliver that we are interested in an
MS-DOS version of EnhComp. Also, as
additional requests for features are made,
we will be considering each and every one
of them. I really feel that every BASIC
programmer has ample reason to purchase a
copy of EnhComp. If you don't like it, you
tell me why [Roy Soltoff].

Here's a couple of items from our
Compuserve Special Interest Group (PCS49).

#: 66854
75126,603
EhnComp:

23-Jun-86
-> Roy: Two

(1) How close

Fm: Bill Warner
questions about

is the syntax to

The Tower of Babel

J
J
J
J
J
J
J

I

I
.J

J
J
J
J
J

I
...J

I
1.

_j

i
I .

.J·

J
I
i

_J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

LBASIC (e.g. would it be fairly easy to
convert an existing program)? (2) Is the
final program self-contained or must the
support library be on-line at run-time?
Thanks -Bill

(RE) EnhComp is pretty close. It has some
different reserved words. For example,
RDGOTO is used to reposition a DATA
pointer. I used 'SYSTEM"string"' to
implement the 'CMD" ••• '" of LBASIC.
However, EnhComp includes a preponderance
of extra statements. For example, it
supports: INPUT@pos, "printstring";
var..... It supports BREAK key handling
with 'ON BREAK GOTO label' which is
similar to 'ON ERROR GOTO label'. The sort
syntax is different. It doesn't use CMD"O"
but a series of statements: SCLEAR to
clear the sort work space; KEY to specify
the key array, TAG to specify the tagalong
arrays, if any, and SORT to invoke the
actual sort. But it also has REPEAT-UNTIL,
program-controlled print zones, WPOKE and
WPEEK. USING is actually a string
function; thus, you can set the result of
a USING into a string for further
manipulation. That's pretty powerful! It
even provides INC and DEC of integer
variables for speed (like ++i and --i in
c). Enabling and disabling of the BREAK
key is done via BKON and BKOFF rather than
via CMD"B, "sw". It uses LOAD to load an
object file instead of CMD"L","spec".
Certainly, MERGE is irrelevant. RUN
invokes another CMD program (no saving of
variables). Also, the date and time are
retrieved as DATE$ and TIME$ (8-characters
each). There is no USR function as the
built-in assembler lets you have the
"assembly" routines right with the BASIC.
Besides, with an assembly interface, you
could easily create your own USR. By the
way, the generated CMD file is standalone
- whatever routines which are needed from
the SUPPORT/DAT library are linked during
the compilation process. Enough? -Roy

Here's an interesting "accuracy" benchmark
from Jeff Brenton [CLMFORUM] 76703,1065.
Once I fixed up the rounding kludge in
Enhcomp, it's result was 2499.999999.

100 ' time and accuracy test in BASIC
110 DEFINT I: DEFDBL A
120 ILOOP=2499

··•··.
The Tower of Babel - 25 -

130 A= 1
135 PRINT TIME$
140 FOR I=l TO ILOOP
150 A=TAN(ATN(EXP(LOG(SQR(A*A)))))+l.O
160 NEXT I
170 PRINT USING "A = /NNNfo. /NNfo##/fo" ;A
175 PRINT TIME$
180 STOP

The answer SHOULD be 2500.000000, but MS
DOS will come up with 2700+, and
TRSDOS/CPM will come up with 2300 or so.
Even Microsoft FORTRAN for 8080 machines
will come up with the same horrid results.
[by the way, the run time is much more
than a few minutes - don't start thinking
that the program crashed -Roy]

The C Language

In case you may not have realized, MISOSYS
has released its full-C compiler
implementation for the Model I/III under
LOOS (called MC) and the TRSDOS-6
compatible version called PRO-MC. This
compiler was released on 07/10/86 and is
version 1.5a. The compiler requires the
use of a relocatable macro assembler which
supports Microsoft's REL conventions.
Either M80 or our own MRAS or PRO-MRAS
assemblers are suitable.

The following notes covering this release
may be useful for your consideration.

For Model I/III users, the MC compiler is
a very big set of executable command
files. As such, only about S-6K of memory
space is available for the compilation
process. You must utilize the smallest
possible amount of high memory for
purposes other than the compiler. The size
of the source code file which can be
compiled is limited by this high memory
space available.

The following are the only known language
enhancements and limitations:

(1) Typedef is supported. All typedefs are
global; that is, none are local to any
particular block. The full typedef syntax
and usage is supported, with the following
exceptions: typedefs may NOT be modified
with the keywords "short", "long",
"unsigned"; likewise, the keywords

The Tower of Babel

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

"short", 11 long", 11 float", "char", and
"int" may NOT be modified by a typedef.

(2) Enumerated types are supported. Like
structure and union types, enums are
global; there are no local enums within a
block. Enum variables are treated
identically to signed short integers, and
can be used interchangeably. The full enum
constant list syntax is accepted; each
enum constant is treated as if it were the
equivalent integral constant. Strict type
checking between enum variables, enum
constants, signed short integers, and
integral constants is NOT done.

(3) Bit fields in structures are fully
supported. All bit fields are treated as
unsigned short integers; there are no
signed bit fields. Bit fields are ordered
from high (most significant bit) to low
(least significant bit) in a machine word
(16 bits). The ordering is such that the
first declared bit field will start in bit
15 of a double Z80 register (e.g. bit 15
of HL, or bit 7 of H), and so on. Note
that when a word containing bit fields is
fetched from or stored into memory, the
high and low bytes are reversed! This
reversal must be taken into account when
creating a set of bit fields to describe
an externally imposed format (e.g. a bit
structure maintained by the operating
system). The reversal is of no importance
if the structure is wholly contained
within the C program, and not used outside
of it.

(4) When you initialize a pointer with a
static object, you can use the address of
the object plus or minus an offset (which
gets scaled); you cannot use the address
of a subscripted object. Similiarly, you
cannot take the address of a
structure/union member in an initializer.

concerning C which
our Compuserve

I suspect that
will find it

Here is some dialog
recently appeared on
Special Interest Group.
some QUARTERLY readers
educational, as well.

#66168 07-Jun-86 Les Mikesell 70010,266

Confusing=
error in C,

and = is a fairly common
especially in statements like

The Tower of Babel - 26 -

11 if(x=y)". The compiler doesn't complain
because this is a legitimate statement -
it assigns the value of y to x and the
"if" test will evaluate TRUE if y is non
zero. However, the programmer usually
means "if(x==y)" which just tests if the
values are equal. Since BASIC uses the
same syntax for assignment and tests (A=l
vs IF A=l) the operator is context
sensitive. Only the left-most"=" will do
an assignment, the others yield boolean
results of tests for equality. - Les

#66268 08-Jun-86 JOHN DEHELIAN 72667,1744

Simple question to anyone who would care
to answer me; does PRO-MC support the
'void' keyword. I am reading a book by
Jack Purdum that makes reference to it and
from what I understand (I haven't actually
programmed in C yet) this makes functions
work as subroutines in pascal in that the
function doesn't pass a value back to a
variable assigned to that function. I
guess an example might be best here.
Functions normally operate as such: a=
func(parms); Now from what I understand
this keyword allows one to call a function
in the same format as a pascal sub: ex:
exchange(parml,parm2) where you don't
actually want to pass a single value. By
the way, is it possible to pass back
several parameters to the calling program
through a parameter list in C? I'm
thinking of a Fortran subroutine where any
variable in the parameter list that is
changed during the subroutine is passed
back to the calling program.

[MC does support type void; however, its
use is strictly to trap as an error, an
attempt to assign the non-existant return
value of a void function. -Roy]

#66278 09-Jun-86 H. Brothers 70007,1150

MC supports the use of "void" but it is
not necessary in most implementations of C
(including MC). Just because a function
(equivalent to both functions and
procedures in Pascal) returns a value,
there is no necessity to use that value
nor even assign it to another variable. In
C, all parameters sent to a function are
pass.ed "by value." This would seem to be
a handicap, because it implies that the
receiving function cannot change the

The Tower of Babel

J
J
J
J
J
I

_J

J
J

I
J

J
J
J
J
J
J
J
J
J

I
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

"original" copy of any variable it
receives. However, if you pass a pointer
to a variable, the receiving function can
then change the original value, since the
only thing it can't change is the value of
the pointer (i.e., the address of the
storage location for the variable). And,
if you wanted to change a pointer for some
reason, you could always pass a pointer to
the pointer, etc. ad infinitum (well, at
least to the limit of most human brains to
comprehend what's happening). -- Hardin

#66287 09-Jun-86 Les Mikesell 70010,266

The keyword "void" simply means that a
function does not return ANY value. This
is only useful when an advanced syntax
checking program (like "lint" under unix)
parses the program to determine if the
function return value is the same data
type as the variable being assigned. In
other words, MC will simply ignore the
word void (as opposed to giving an error
message if it didn't support it). This has
nothing to do with the second part of your
question that related to "call by value"
as opposed to "call by reference". In C,
when a variable is passed to a function,
the function gets a *copy* of the variable
that can be treated as conveniently
initialized local storage. However, if you
want the function to be able to alter the
callers copy of the variable, just pass
the "address of" the variable using the &
operator, and manipulate in the function
using the "pointer to" operater *· Your
exchange function would look like this:

int a= l; int b = 2;
exchange (&a,&b);
•• more program
exchange(x,y)
int *x,*y;
{ int tmp;

}

tmp = *x;
*x = *y~
*y = tmp;

Note that this only applies to "normal"
variables - array names are treated like
the address of element O of the array, so
that arrays are passed to functions by
reference. However, the boundaries of the
array are not automatically known by the
function. - Les

The Tower of Babel - 27 -

#66345 ll-Jun-86 jeff brenton 76703,1065

but the new compilers [on larger systems -
ed] will generate a warning if you have:
extern int puts(char*); in a header [as
the prototype for puts()] but fail to cast
it when you ignore it's return value, as
in: (void)puts ("this is a string\n"); the
added overhead is to insure that the
programmer KNOWS that puts() actually
returns a value, and thats/he INTENDED to
ignore it.

#66336 10-Jun-86 JOHN DEHELIAN 72667,1744

Thanks Les, What significance do the &
operators have in the parameter list of
your example exchange(&a,&b)? Is this
operator necessary whenever variables are
'passed by reference'? Thanks again.

#66341 ll-Jun-86 John J. Stein 74056,673

The '&' operator tells the function that
it is getting an address of a variable
rather than a copy of it~s value. Using
this address, you can change the value of
the variable from within the function. The
scanf() function uses this operator. When
you want to input a decimal number from
the keyboard called num, you use scan£()
like this: scanf("%d" ,&num); The & will
pass the address of num to scanf so it can
put the number you input into the
variable.

#66378 12-Jun-86 Les Mikesell 70010,266

I think you have the right idea but your
comment that the & "tells the function
that it is getting an address" is a bit
misleading. Actually the & is processed
BEFORE the function is called, so that an
address is passed instead of the value of
the variable. The function has to already
know to expect the address rather than a
value. - Les

#66340 ll-Jun-86 John J. Stein 74056,673

Like Hardin has said, just because a
function returns a value doesn't mean it
has to be used. For instance, the function
puts() returns an integer, representing a
statu~ code, depending on the outcome of
the function. If the status is equal to

The Tower of Babel

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

EOF, then the puts() was unsuccessful.
You'll notice, though, that no one [few,
not necessarily "no one" -ed] uses this
value. So in programs you'll see just
puts("This is my message"); rather than
status= puts("This is my message"); Both
examples are equally valid, and will
execute the same way. From what I've seen
so far, the void type does nothing but
make sure that you don't try to assign a
return value to a function that wasn't
supposed to get one. You don't seem to be
"saving" anything by using void.

#66334 10-Jun-86 JOHN DEHELIAN 72667,1744

Thanks Hardin, I would just like to say
that I've admired your work in 80-Micro.
Do you mean, when you say there's no need
to assign a variable to a function, that I
can define a function without the void
statement and then call it by simply
writing its name with all necessary
parameters? For example, say I wrote a
function to swap two variables. Could I
call the function like this?--> swap(i,j)
<-- or would I have to assign some
variable, void=swap(i,j), where void is
defined as int. This is the method the
author suggests as an alternative to using
the void statement if it is not supported.
He explained that in this way the
information passed back to void will not
be used by mistake as useful data.

#66405 13-Jun-86 Roy Soltoff 70140,310

That's NOT how MC's void function works.
The 'void' keyword is used to declare a
function {similar to what you would do to
declare a function which returns a value}.
Thus, the declaration, void func();
declares "func" to be a function which has
no returned value. If later in your
program, you have coded, var = func(),
then MC will flag that as an error! It is
one more means of ensuring that your
coding does not get you into trouble. -Roy

#66377 12-Jun-86 Les Mikesell 70010,266

You are perfectly free to use or ignore
the return value from a function as you
like. Unless otherwise declared, the
compiler will assume that all functions
return an int value. - Les

The Tower of Babel - 28 -

#66376 12-Jun-86 Les Mikesell 70010,266

OK, let's start from the beginning here.
When you use a simple variable name in 'C'
you refer to the current value of the
variable. If you use "&variable" you refer
to the "address of" the variable or the
place in memory where the variable value
is stored. This is also called a "pointer
to" the variable. A reference like
&variable actually generates a constant,
but Callows you to declare variables with
types of "pointer to" the other data types
so that address values can be manipulated.
To access the value of a variable given
its address, you use the construction
"*address" which means "get (or set) the
value this pointer is pointing to". Now,
to confuse things just a bit more,
consider how a function call works. First,
all the parameters are evaluated and their
values are placed on the stack, the
function is called and its return value
may be used or ignored. The compiler does
not do any particular checking to see if
the parameters are in any way what the
function expects that is up to the
programmer (the function may be compiled
separately). So, when ordinary variables
are passed (i.e by value), the function
just gets a copy of that value pushed on
the stack to appear like a local variable
to the function. It *cannot* affect the
callers copy of that variable. However, if
you want the function to be able to
manipulate the callers variables directly,
you can pass the address of the variable
(using the &variable syntax in the
function call) and the function can then
modify the contents of that address. This
is the way you achieve a "ca 11 by
reference". Note that the function must be
aware of the type of data passed and use
the *address operator to modify the
contents of the passed address. Some
general points: global variables are
available to functions without being
passed at all (and may be manipulated by
the functions). Array names are generally
equivalent to the address of element O of
the array (except that sizeof(arrayname)
returns the size of the array, not the
size of a pointer).

Turning now to our correspondance file,
someone asked us why our new MC C-compiler

The Tower of Babel

,

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

required a relocatable assembler that was
M-80 compatible (that's Microsoft's
assembler). The question originated from
someone already owning Tandy's ALDS
relocatable macro assembler. Good
question; here's the answer. All
relocating macro assemblers may appear to
work the same way; however, there is a
world of difference between ALDS and MRAS.
As far as MISOSYS is concerned, the
"standard" protocol of a relocatable
module is that defined by Microsoft since
their MACR080 assembler was first on the
8-bit market many years ago. The
relocatable module file structure is used
by Microsoft's M80 assembler, F80 FORTRAN
compiler, BASCOM BASIC compiler, and their
COBOL compiler. ALDS is not a Microsoft
product. It was written by Tandy. ALDS is
not compatible with · Microsoft's
relocatable module structure. When we
wrote MRAS, it was our decision to support
the Microsoft format; thus, all of the
libraries provided with the MC compiler
are in Microsoft relocatable format. That
is the primary rationale for requiring
either M80 or MRAS. We cannot support
another format. It is unfortunate that
Tandy chose to implement a non-standard
format in their ALDS package, especially
considering that they already SOLD
Microsoft's product. M80 is included with
their FORTRAN package.

Scott A. Loomer of Newburgh, NY writes of
EDAS Version 4.3, "the EDAS enhancements
sound very useful. I've already patched in
the DATE and TIME feature. In my LC/ASM
file, I've added the following right after
the ORG [statement] and before the line
labeled "@START":

CDATE

CTIME

@START

ORG nnnn
DATE
DB 0
TIME
DB 0

This allows me to place the following line

in my title headers for 'LC' programs

printf("Revision: %s, %s\n",CDATE,CTIME))

so that I can tell tne dozensofve~sions
that seem to hang around my system." [Note
to MC users: You can use the DATE
preprocessor macro for this purpose":- -ed_]_

The following book reference comes from
David B. Lamkins, of Canton, MA. "C: A
REFERENCE MANUAL", by Harbison and Steele
published by Addison & Wesley, 1984. David
writes, "This is very thorough and well
organized, having been written from the
viewpoint of compiler implementors. This
is for the more experienced C programmers,
as there is virtually no tutorial
material. I would like to see this become
a 'standard supplement' to K&R, as it
brings C into the 1980's with enum types
and separate name spaces for structure
tags. Furthermore, ideosyncracies are
brought to light throughout the book; some
may surprise even veteran C programmers."

Ian Kluft writes, "I tried the C stack
eater [from NOTES Issue IV. -ed] under
CP/M+ Alcor Con my 128K system. It didn't
stack up (no pun intended) well against
the competition. It did 1256 recursions
before giving a 'stack overflow' error. If
I could have used the extra bank for the
stack, it might have done better. Your LC
is quite a product.

Michel R. Coutu writes, "I would like to
provide you with a simple encryption
program for your next edition of NOTES. I
do not know if you have many of these
encryption programs, but this one is
simple and works very fast. I use it at
work on an IBM PC in order to protect some
text files. Incidentally, I have this
program in compiled BASIC and it
crypts/decrypts a 24K data file in 2:54
minutes while LC does it in 1:04 minutes.
Excellent!

/* simple exclusive OR encryption/decryption filter*/

The Tower of Babel - 29 - The Tower of Babel

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

This program is a simple encryption/decryption filter using rotating half sums
with the key. If used with two successive keys (under UNIX, QNX, ZSHELL with
piping) whose lengths are relatively prime, crypt is equivalent to a key of
length to the product of given key lengths, this will deter all but the CIA or

-------------very-~den:mi-ned hackers. The encrypted file can be made with the following
command:

crypt key! <fnamein I crypt key2 >fnameout

You can recover the plain text file by the same command but reversing the
order of fnameout & fnamein.

One caution: This program works very well with ASCII text files. However, you
must be careful with non-ASCII files as an exclusive OR with OOH will produce
the character in the key.

/* crypt/ccc Program.
Public domain provided by Quantum Software, Inc. Ottawa, publishers
of the QNX operating system for the IBM PC.
This version for MISOSYS' MC running on a TRS-80 Model 4.

*I
#include stdio.h
main(argc, argv)
int argc;
char *argv[];
{

int strlen(), getchar(), putchar(), int fputs();
inti, c, keylen;
if(argc==2)

keylen = strlen(*++argv);
else {

key\n",stderr); fputs("Use: crypt
fputs("To encrypt
fputs("To decrypt
exit(!);

crypt key <fnamein >fnameout\n",stderr)
crypt key <fnameout >fnamein\n",stderr);

}
for(i = 0; c = getchar()) != EOF; ++i)
putchar(c ~ (*argv[i % keylen]);

}

A CC for MC by Mike Bedore

First, I would like to express my
gratitude to both Roy Soltoff and Rich
Deglin for the fine job done with the MRAS
package and the MC compiler. I was
especially impressed with the effort taken
to maintain as much compatibility with
UNIX as possible, perhaps because I do a
bit of C programming on a Xenix system
owned by a local fellow. It is really nice
to be able to easily port programs from
the Xenix environment back to my Model I.

Along this line, I wanted to be able to
compile, assemble, and link several source

The Tower of Babel - 30 -

and object files with a single command
line on my Model I, much like you can do
in the UNIX/Xenix environment. Well, I was
mildly successful in achieving this
objective, and I thought you might be
interested in the result.

What follows
(what.else?),
parts) "ccmain"
documentation for

is a program called "cc"
the C source code (in 2

and "ccpart2", and the
the program.

The syntax isn't perfect
exactly the same as most C
UNIX/Xenix), but the
eliminate much of the work

(at least not
compilers under

program will
associated with

The Tower of Babel

J
J
J
J
J
J
J
J
J

I
_J

J
J
J
J

J
J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

compiling, assembling, and linking
separate files and modules using MC, MRAS,
and MI.INK (other than writing the code in
the first place!).

CC was compiled on my Model I and thus
(alas) can't be used on a Model 4 as is.
The documentation for CC contains an
additional note about compiling cc on a
Model 4.

NAME
CC - Compile MC Programs (requires MISOSYS' MRAS package)

SYNOPSIS
CC builds and executes an LOOS JCL file to compile,
optionally optimize, assemble and link one or more source
and object files into an executable program file.

SYNTAX
cc [-option] [-option] [•••] main.c [file.c •••] [prog.o •••]

This documentation is for Version 1.0, 26-Jul-86!
By: Mike Bedore (75206,3164]

The options are as follows:

-c Compile and assemble only (no link).
(default: compile, assemble and link).

-C Compile only (no assembly or link).
(Default: see -c option)

-d n Look for source files and write /CMD file to drive "n".
(defaults to drive 1)

-e Do NOT execute the JCL file.

-k Delete temporary files as the work progresses. This may
help those who are short on disk space (i.e. 2 drive
system). (default: no delete)
NOTE: /REL files are NOT deleted in any case.

-m This option is only available when cc is compiled on a
model 4 (with DOS6 defined). When running on a model 4,
cc will normally use the single program MC/CMD rather
than MCl followed by MC2. If for some reason you want
to use the MC1/MC2 combo, specify -m

-o name Write linker output to "name" instead of the default
(defaults to same name as the first source file found).
Do NOT include an extension or drivespec! The extension
will be "/CMD"; the file will be written to the drive
specified with the -d option.

-0 Optimize all source files prior to assembly.
(default: no optimization.)

-t n Write temporary (/TOK, / ASM, /REL) files to drive "n"
(defaults to drive 1)

-v n Use a virtual memory file for MI.INK when linking the
final output. The MLINK/VMF file will be on drive "n".

The Tower of Babel - 31 - The Tower of Babel

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986

(default: will NOT use VM)

NOTES
Options may be in any order, may NOT be concatenated,
and MUST precede all input filenames.

The -d, -t and -v options MUST have a space between
the option flag and the drive number ("n" above), and
the drive number MUST be present in the form of a
single decimal digit.

Input filenames must NOT include extensions or
drivespecs (other than .c or .o).

All input filenames MUST end in ".c" (source files) or
". o" (relocatable object modules).

Source (11 .c") files and object (".o") files may be in
any order, but they must appear after all options, and
the first "file. c" encountered must contain main().

A maximum of 8 source files and 8 object files in any
one "run" is supported.

Any "file.c" will actually use "FILE/CCC" and any
"file.0 11 will use "FILE/REL".

The / JCL file "CCJOB/ JCL" is written to the first
available drive.

For model 4 use, 4fodefine DOS6 in "CCMAIN/CCC" before
compiling it.

/* cc.c - Vers 1.0, 26-Jul-86, by: M. J. Bedore [75206,3164]
* An alternative to MC/JCL for compiling, assembling
* and linking MC produced program modules.
* NOTE: this program requires the MISOSYS MRAS package

*I
#include <stdio.h>
#define MAXF 8
4Fdefine JCL 11 ccjob/ jcl"
#define NSIZE 15
/* #define DOS6 */
/* The above #define is needed for compilation on a model 4 */

extern int split();
extern void doopt(),doasm(),dolink(),abend();

char *cfiles[MAXF],*ofiles[MAXF],ofname[NSIZE];

/* drive defaults*/
char *drive= ":1 11

,

*tdrive = ":l",
*vdrive =" ";

char *ext = 11 /asm";

The Tower of Babel

/* input and output drive*/
/* temporary files drive*/
/* actually just storage for -v

option if selected*/

/*<--should NOT be changed!*/

- 32 -

Volume I. i

The Tower of Babel

J
J
J
J
J
J
J
J
J

I
_J

J
J
J
J
J
J
J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986

int cctr,octr,rmof,offlag,vflag;
#ifdef 00S6

char *rmcmd = "remove";
#else

char *rmcmd = "ki 11";
#endif
I* ---*/
main(argc,argv)
int argc;
char **argv;
{

int asm,link,opt,exec;
ffoifdef DOS6

int me = TRUE;
#endif

char *strncat(),*strcpy();
FILE *fp, *fopen();

/* set option defaults*/
asm = exec = link = TRUE ;
opt= offlag = rmof = vflag = FALSE;
cctr = octr = O;

/* ok, now parse option flags from command line*/
while(--argc > 0 && (*++argv)[O] == '-')

switch(*(argv[O]+l)) {
case 'c': link= FALSE; break;
case 'C': asm =link= FALSE; break;
case 'd': strcpy(drive, 11

:
11
);

strncat(drive,*++argv,l);
argc-; break;

case 'e': exec= FALSE; break;
case 'k': rmof = TRUE; break;

ffoifdef DOS6
case 'm': me= FALSE; break;

ffoendif

}

case 'O': opt= TRUE; break;
case 'o': strcpy(ofname,*++argv);

argc-; offlag = TRUE; break;
case 't': strcpy(tdrive, 11

: ");

strncat(tdrive,*++argv,l);
argc-; break;

case 'v': strcpy(vdrive, 11
:

11
);

strncat(vdrive,*++argv,1);
argc-; vflag = TRUE; break;

default:
abend(11 cc: illegal option %c\n" ,*(argv[O]+l));
break;

if(! link) offlag = FALSE; /* no point in output w/o link*/
if(! argc) I* no arguments left!*/

abend("cc: NO input file(s) found!\n",NULL);
if({fp=fopen(JCL, "w")) == NULL)

abend(11 cc: Can't open %s for output!\n",JCL); ·-

/* now process the input filename(s) */

The Tower of Babel - 33 -

Volume I.i

The Tower of Babel

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986

do {
if(split(*argv++)) { /* if split() file had 11 .c" */

fprintf(fp,"mcp %s%s +0=%s\n11 ,cfiles[cctr],drive,tdrive);
{foifdef 00S6

iffoendif

if(mc)
fprintf(fp,"mc %s%s +0=%s\n",cfiles[cctr],tdrive,tdrive);

else {

fprintf(fp,"mcl %s%s\n",cfiles[cctr],tdrive);
fprintf(fp, "mc2 %s%s +o=%s \n", cfiles [cctr], tdrive, tdrive);

iffoifdef 00S6
}

iffoendif
if(rmof)

fprintf(fp,"%s %s%s%s\n11 ,rmcmd,cfiles[cctr], 11 /tok",tdrive);
cctr++;
}

else octr++;
} while(--argc > 0 && cctr < MAXF && octr < MAXF);

if(argc)
abend("cc: Too many input files! \n" ,NULL);

if(opt) doopt(fp);
if(asm) doasm(fp);
if(link) {

do link(fp) ;

Volume I.i

fprintf(fp, 11 .cc: Completed Compilation of \ 11%s\"\n",offlag =TRUE? ofname
cfiles [O]);

}

}

fprintf(fp, 11//exit\n");
fclose(fp);
if(exec)

execl("do", "do", 11=11 ,JCL,NULL);
else

exit(O);

The Tower of Babel - 34 - The Tower of Babel

J
J
J

I
__J

J
J
J

I
..J

J
J

I
_J

J
J
J
J
J
J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986

/* ccpart2.c Vers 1.0, 26-Jul-86, M.J.Bedore */
#include <stdio.h>
#define NSIZE 15

extern char *cfiles[],*ofiles[],ofname[],*drive,*tdrive,*vdrive,*ext,*rmcmd;
extern int cctr,octr,offlag,rmof,vflag;

void doasm(fp)
FILE *fp;
{

int i;
for(i = 0; i < cctr; i++) {

if(i) /* this is NOT the 1st file*/
fprintf(fp,"mras %s%s%s +o=%s -nl\n",cfiles[i],ext,tdrive,tdrive);

else /* 1st one seen ••• must have main()*/
fprintf(fp,"mras me +I=%s%s%s +o=%s%s -

nl \n", cfiles [i] ,ext, tdrive, cfiles [i], tdrive);
if(rmof)

£print£(£p,"%s %s%s%s\n",rmcmd,cfiles[i],ext,tdrive);
}

}

I* ---*!
void abend(sl,s2)
char *sl,*s2;
{

}

£printf(stderr,sl,s2);
exit(l);

I* ---*!
void doopt(fp)
FILE *fp;
{

}

inti;

for(i = 0; i < cctr; i++) {
£print£(fp, "mcopt %s%s \n", cfiles [i], tdrive);
if(rmof)

£print£(£p,"%s %s/asm%s\n",rmcmd,cfiles[i],tdrive);
}
strcpy(ext,"/opt");

I*------------------------.--------------------------------*/
int split(arg)
char *arg;
{

int cflag = FALSE;
char *pp,*p;
char *strchr(),*strcpy(),*malloc();

if((pp = strchr(arg, '.'))==NULL)
abend("cc: missing type specifier on %s\n",arg);

pp= '\0'; / terminate the name*/
if((p = malloc((unsigned) NSIZE)) == NULL)

abend("cc: out of memory in splitO\n",NULL);
strcpy(p,arg);
switch (*++pp) {

case 'c': cfiles[cctr] = p; cflag = TRUE; break;·

Volume I. i

The Tower of Babel - 35 - The Tower of Babel

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

case 'o': ofiles[octr] = p; break;
def.auk· ~--~-------·------------------ *--pp='.' /* restore string argument*/

abend("cc: bad type specifier %con %s\n11 ,arg);
}
return(cflag);

}
/*---*!
void dolink(fp)
FILE *fp;
{

}

int i;

fprintf(fp,"mlink -a=y\n11
);

if(vflag) fprintf (fp, 11-v=%s \n", vdrive);
for(i = O; i < cctr; i++)

fprintf(fp,"%s%s\n",cfiles[i],tdrive);
for(i = O; i< octr; i++)

fprintf(fp,"%s%s\n11 ,ofiles[i],tdrive);
if(offlag)

fprintf(fp,"-n=%s%s -e\n",ofname,drive);
else

fprintf(fp,"-n=%s -e\n",drive);

EDITORS: SAID

Here is some information wich may clear up
some confusion concerning SAID. There is
no such thing as "insert tab". TAB is
treated like any other character entered
from the keyboard. If you are in
overstrike mode, the depression of the TAB
key will overstrike the character under
the cursor with a TAB character. The
display will then be refreshed to expand
the TAB which you have just entered. SAID
does not provide any detectable keystroke
to be able to reposition the cursor to tab
stops on the screen - there just aren't
enough keys on the keyboard.

SAIDINS does indeed get confused with what
gets displayed when you depress a <CLEAR>
plus a letter <@,A-Z> key and/or the
<SHIFT> key. This is because the keyboard
driver inverts the sense of the SHIFT key
when returning key codes for <@,-z>
depressed simultaneously with the (CLEAR>
key. For instance, (CLEAR><A> generates
X'C2' which should be noted as a shifted-A
and CLEAR. Unfortunately, the DOS keyboard
driver and hence the SAID internal
keyboard driver takes care of this
inverting. I believe that Karl may have
overlooked this esoteric fact of operation

The Tower of Babel - 36 -

when he coded the display result. It will
be corrected if SAIDINS ever gets
regenerated. At this point, we feel that
the "bug" is not severe enough to warrant
immediate attention.

If you want to change any of the command
keys during SAIDINS, just depress the
keystroke. SAIDINS will detect it and ask
you to double check your entry by
repeating it. It is not true that SAIDINS
carries through #33 of its 36 commands.
SAID has only 33 commands. The list shown
in the SAID documentation is 36 command
functions. The documentation states that
function 34 is not mapped. All functions
including 34-36 can be mapped to keys when
you request the change of extra characters
in SAIDINS. Functions 35 and 36 are
normally invoked via a Meta-Block-Swap
sequence and are available only under PRO
SAID. "Change extra keys" refers to the
ability to assign functions, shown in the
SAIDINS documentation, to specific
keyboard keys. It is useful to use this
for setting frequently used two-key
functions to a function key. The TRS-8O
Model 4 has three function keys while the
MAX-8O has four function keys; you can
make use of them. Using the Model III LDOS
keyboard driver, (CLEAR)(SHIFT><0> will

The Tower of Babel

J
J
J

I
J

J
J
J

I
....J

J
i
I

....J

J
J
J
J
J
J
J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

not work; however, <CLEAR><SPACE> is
equivalent and takes up one less
keystroke. <UP-ARROW> should work after
you apply the patch to SAID for the MAX-80
as noted in the SAIDDOC/TXT documentation
file (maybe its SAID/DOC).

As far as SAID goes, if you are using SAID
under LOOS, then you cannot use the SAID
internal keyboard driver. You must specify
this in response to the driver query which
is the first query in SAIDINS. The
documentation states, "The installation
program can be used to override this
built-in keyboard driver for LOOS users."
Perhaps because I didn't say "MUST"
instead of "can", it lead a few users
astray. The exception is if you don't have
the LOOS keyboard driver installed;
however, don't expect SAID's driver to
deal with the extra keys on the MAX-80!

Here's another SAID quirk when used with
the Model III mode LOOS driver. Here is
the scenario. The Model I/III version of
SAID has a little routine to dynamically
change the value returned by the DOS's
keyboard driver for the up arrow key. Up
arrow normally generates a SBH code which
is a left bracket"[". Since SAID desires
to have up-arrow return OBH, it changes
the driver translation byte for that key.
It is done on the fly. Next, recognize
that SAID has a patch to be applied for
the MAX-80. What it does is change the
offset from the start of the keyboard
driver to where the byte is that must be
changed. Next, note that this little
routine is not in SAIDINS; thus, if you
are not going to use the SAID keyboard
driver but use the LOOS keyboard driver,
then that change is not going to be made.
If you try to install the up-arrow as a
operating function other than a defaulted
key command, it will be entered as a SBH.
Then, when you invoke SAID, that key will
generate a OBH. That's the problem. The
solution is to add the little routine to
SAIDINS which is in SAID, We may
eventually get around to that someday. In
the interim, the LOOS keyboard driver user
can specify the X'OB' keycode via the
combination of <CTL-K> during installation
and <UP-ARROW) when in SAID.

SEARCH was specifically coded to be case
insensitive at your option. This can be

The Tower of Babel - 37 -

changed with SAIDINS. Also, if you enter
the search string in a combination of
upper case and lower case, the search will
be case sensitive. That obviously requires
the searched for string to be in upper and
lower case. By experiment, you can FIND
any character - just enter it in the FIND
string. The BLOCK key is a character. The
only exception is the TAB function entered
via CLEAR+RIGHT but re-interpreted to
X'09' - an ASCII TAB. You can FIND it (or
change it) via CTL-I (a TAB). Speaking of
blocks, yes, you can unmark a single block
via DELETEs. We decided against unmarking
designated blocks for simplicity.

SAID was designed so that a <BREAK> would
not terminate insert mode.

SAID was designed for <ENTER> to always be
inserted and never to overstrike the
character underneath the cursor. It is
nice that way too!

As far as the menu status line goes, Bank
represents what banks of RAM are available
for use and in use by PRO-SAID. "Dir: For"
indicates the direction state of the
search command. Remember, you can search
forward or reverse-search. "Cnt: l"
indicates that the Macro repeat count is
currently set to 1. The "%" display is
measuring the position of the cursor
through the file as a percentage of the
total number of characters. This figure is
accurate once the buffer contains 100
characters.

One enters SAID from EDAS via the "Q"
command. One can also enter EDAS from SAID
via the "DOS COMMAND". These functions are
like the "SYSTEM" function in BASIC;
except that they permit you to invoke ANY
command that is capable of being invoked
from DOS Ready with certain restraints.
You are inhibited from invoking a command
which would attempt to alter HIGH$. So
when you invoke SAID from EDAS then exit,
of course you get the "Press any key to
continue" prompt. That will continue you
in EDAS! What a powerful capability to
find in a program. Why, you could even
FORMAT a new disk and make a BACKUP from
inside SAID or EDAS!!!

The reason SAID will prompt
exit even if you have saved

you when you
the changes

The Tower of Babel

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

and no further changes exist is to give
you an opportunity to save it again under
either a new name or even on a new disk.
Many times when I am working at the
computer with a large piece of text or
source code, I save the same buffer to two
or three different disks. It saves me from
having to go and make backups at the end
of the day. An ounce of prevention is
worth a pound of cure. Only once in my
entire experience of programming on Tandy
computers have I had to reconstruct a
file. That was way back in the early days
when I overwrote the source file with the
object code during an assembly with a
DISK*MODified EDTASM. That may be too
early for most folks to remember. Luckily,
I was able to reconstruct the source by
disassembling the object code file with
DSMBLR. To this day, a portion of the
DSMBLR source code remains uncommented
because of that error. When one makes a
mistake such as that, one soon learns that
humans as well as computers are fallible.
I heartily recommend making at least two
copies - each on a different disk. That
procedure has saved me probably a dozen
times.

SAID and EDAS do not interface with each
other. They are both stand alone programs.
The "Q" command of PRO-CREATE and the DOS
COMMAND of PRO-SAID do not use the @CMNDR
SVC because it limits you to DOS commands
which execute solely within the library
overlay region. The COMMAND functions of
PRO-CREATE and PRO-SAID do not limit you.
No, we could not have invoked @CMNDR from
"protected memory" and avoided altering
@EXIT linkage as most programs out
commercially do not exit via a RETurn and
do NOT maintain the stack properly, These
two conditions must be met in order for
@CMNDR to function.

Frank A. Yacucci wanted to make some
changes to the way our ALTDISK and PRO
SAID programs dealt with command line
parameters. With PRO-SAID, he wanted to
change the assembler file extension of
SAID from its normal "ASM" to "SRC". I
advised him that, if he didn't already
have LS-FED II from LSI (now a MISOSYS
product), that he get a copy. It is
invaluable for finding out how to do the
things he had requested, _and more. I also

The Tower of Babel - 38 -

told him how to discover the patches he
needed to effect a resolution of his
questions. The techniques are applicable
for altering a wide range of poducts (see
my response to his questions on PRO-ESP).

In order to use SRC as the assembler
extension default in PRO-SAID in lieu of
ASM, all you would need to do is to change
any character string in the SAID/CMD file
from ASM to SRC. From then on, SRC is your
default. To change the command line 'ASM'
parameter, investigate the parameter
table. One of the ASMs found in the file
is this table. Note that there is also an
'A' one-character abbreviation. If you
want to change the OPTIONS meta command to
accept 'S' in lieu of 'A', you will have
to dig further; however, with FED, it is
easy. You should note that the options
display shows "Asm" for the ASM option.
Look for that string then find out what
references it. You will be amazed at how
easy it is to search out the needed patch.
Of course, all this precludes knowledge of
assembly_ language; however, since you
stated that you are using PRO-SAID with an
assembler that uses the SRC extension, I
know you are familiar with assembler.

I realize that it is easy to ask someone
for a patch; however, it becomes more of a
learning exercise for you to be able to
find the answer yourself. After he tackled
my solutions, he came back for more. After
receiving his letter of April 30th
concerning DEFAULTING the SAID program to
"/SRC", I realized what he was getting at.
He didn't just want to use "/SRC" in lieu
of "/ASM", he wanted SAID to be invoked
automatically assuming the assembler
source options.

I took a look at SAID and noted that Karl
ignored testing the parameter options if
no parameters were entered on the command
line. That's why when Frank changed the
contents of X'4DC3' from 0000 to FFFF, it
didn't force a default to the "A"
parameter. You can easily fix this up in
PRO-SAID by the following patch:

PATCH SAID (D28,31=17:F28,31=6C)

This patch forces PRO-SAID to still check
the option routines regardless of the
entry of parameters on the command line.

The Tower of Babel

J
J
J
J
J
J

J
J

I
J

I
.....J

J
J
J
J
J
.....J

J
J
J

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

In this way, any other default could also
be changed by patching the parameter table
or the word pointed to by the vector entry
in the parameter table.

EDITORS: LED

It has been reported and confirmed that
the first TAB stop position in LS-LED is
at column 8, not column 7 as should be the
case (columns count starting from O; thus
the 8th column is column 7). This will
probably be examined in detail sufficient
to work up a patch by the next issue of
THE MISOSYS QUARTERLY.

FORTH: HartFORTR

We received a query concerning licensing
rights for software developed with the
HartFORTH compiler. The following should
clear up any confusion concerning this
matter.

The following points stipulate the rights
of a purchasor of HartFORTH to develop
application programs with HartFORTH and to
distribute said application programs.
These points in no way grant any other
rights of distribution of the HartFORTH
product.

1. No royalties are obligated to MISOSYS
for a purchasor's distribution of his or
her applications developed with HartFORTH,
providing the purchasor adheres to items
2, 3, 4, and 5.

2. The HartFORTH
sector O of the

copyright
VM file

intact in the purchasor's
distribution disk.

appearing in
must be left

application

3. Any facility of HartFORTH's used in the
purchasor's application must be
distributed in compiled form; no SOURCE
screens of HartFORTH shall be distributed.

4. Documentation accompanying the
purchasor's application shall note the
statement,

This application includes portions
of HartFORTH Copyright 1982 by A. M.
Graham, All rights reserved.

The Tower of Babel - 39 -

5. No portion of the HartFORTH user manual
may be distributed with the documentation
accompanying a purchasor's application
program.

Michael Houston had a problem with the
Model I/III version of HartFORTH. It was
our blunder stemming from the release of a
User Manual which was printed from the
PRO-HartFORTH version documentation files.
Apparently, there were a few minor
differences between the HartFORTH editor
and the PRO-HartFORTH editor,

The problem was with the editor's CONTROL
functions in the Model I/III version of
HartFORTH. The author of HartFORTH uses
CONTROL-I for "put line" and CONTROL-K for
"empty the screen" in the Model I/III
version. The Model IV version is as is
documented in the manual. We regret the
inconvience.

Early last year, I received a letter from
Matthew A. Sohlstrom concerning his recent
acquisition of PRO-HartFORTH. Now we don't
get much correspondance about FORTH (nor
do we sell a lot of FORTH compilers];
however, the questions raised in Matthew's
letter and the depth of the response lead
me to believe that the dialog would be
useful for this FORTH column. Here it is.

Matthew writes,
PRO-HartFORTH.
how pleased I
value at a
service and no

"I recently received your
Let me say, first of all,

am with your product. Good
reasonable price, prompt
(or in this case FEW) bugs.

As a BRAND NEW forth user, I am delighted
with HartFORTH in general and in specific.
I am running a 200 page HartFORTH under
TRSDOS 6.2 on the first TRS-80 Model 4 +
128K + graphics that Radio Shack has sold
here in Evansville. A ten meg hard disk
and two external DSDD 80 track floppy
disks, all from Software Support Inc.,
help store and backup the beast •
HartFORTH's speed on the hard disk is
astounding. A friend of mine (also a
Digital Dog Soldier, currently working his
giblets into a state of spontaneous
collapse at Central Methodist University)
commented, upon seeing HartFORTR load and

The Tower of Babel

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

page up and down, "What took it so long,"
as he wiped the carpet lint off his
eyeballs. Finally, the idea of a 2.5 Meg
HartFORTH system (coming soon to a
computer system near ME) leaves me a
little breathless.

There are, however, a few points I would
like to address.

1) First, the doublequote operator (")
does not seem to generate nill-strings
correctly. "" produces a one character
length string with whatever junk was left
in the PAD. This is a bit difficult to
deal with intuitively. I field-fixed it
with the function (possibly incorrect):

: "NILL PAD DUP O C ! ;

which seems to do
be much cleaner and
in the formulation
constants.

the job, but " " would
MUCH more easily used
of new functions and

2) Second, the SVC function is in need of
upgrading. Some SVC calls (most notably
the @FLAGS call) use IX and/or IY
registers for values. Moreover, some
users, while defining SVCs, might find
using those two more than slightly useful
resisters desireable. The cost would be
more numbers on the stack and a bit more
machine code, but nothing FORTH
programmers are not already dealing with
(and successfully, we hope).

3) Third, a bit more documentation on the
ASSEMBLER vocabulary would be nice. I am a
full time programmer/laboratory technician
here at the University of Evansville,
where I write all sorts of neat systems
and support routines for a PDP ll/34A and
several semi-smart peripherals in BASIC,
C, FORTRAN, PASCAL, MACR0-11, and 8085
assemblers, so I am reasonably well
grounded in language use and implemen
tation but I haven't yet been able to
figure out how to do the machine language
routines I need to service my Radio Shack
graphics board. It is possible that I am
being too third generation languagesque,
but I can't even figure out if I'm on the
right track! Which of the mentioned books
might tell me more about machine dependent
code and generation thereof?

The Tower of Babel - 40 -

4) FORTH (and almost apocryphally, or at
least wildly inaccurately last), it would
be nice to be able to change or eliminate
the "ENTER FILESPEC OF FORTH VIRTUAL
MEMORY" prompt so that a FORTH application
could be generated that needs less nursing
through by the end user,

HartFORTH is well suited to the develop
ment and generation of the sub systems
that are needed to form a given
application (like a word processor) or a
given system utility (like a multi-volume
backup for a hard disk) by assigning each
individual sub system to its own
vocabulary or, as in "Starting Forth", by
leaving the code in overlays. This is all
well and fine, but in any given
application, APPLICATION/CMD should wind
up being the virtual memory file, and a
filespec or filespecs specified in the
routine invocation, along with the
appropriate arguments (all of which should
be fetched and parsed with SVC calls on
the Model 4!) should directly control the
application/utility, NOT (I feel) THE END
USER!

If you intend that HartFORTH, while
running under the auspices of TRSDOS 6.x,
remain a separate entity and never be
allowed to generate a utility useful to
TRSDOS 6,x users as a whole, then
HartFORTH is already an astounding and
delightful success. So long, and thanks
for all the fish,"

Naturally, when one is thanked for the
fish, one has to also answer the
questions. After all, I brought my towel
that day. I had tinkered a little with the
HartFORTH CMD file in the Model I/III
environment to be able to make it
transparently portable across those two
machines. So I felt confident about doing
a little digging for Matt, Unfortunately,
since I am not a FORTH programmer, I
decided to pass a few of his queries
across the pond to HartFORTH's author.

To wit my response: "This is in response
to your letter of February 26th. I cannot
address all of your queries at this time.
I want to let you know that I have
forwarded a copy of your letter to
Molimerx (and on to the author) so that

The Tower of Babel

-

I
_J

I
I

_j

I
_J

J
J
J

J
J

I

J
I

_J

I
_J

J
I __,

J
j

J
J
J

I
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

the "heavier" aspects of HartFORTH may be
addressed.

I believe that I may shed some light on a
couple points. Taking the last one first,
you can accomplish part of your need to
have a FORTH application automatically
access the VM file without having to be
prompted. I don't believe there is a
procedure to accomplish this without
patching the application/cmd file, unless
someone has already written an application
to do this. Actually, it is easy to
accomplish. On page 14 of of the manual,
the parameters associated with the SYS
word are shown. Note that SYS+32 is the
file specification used for the VM file if
SYS+31 is non-zero. Thus, if you change
the contents of these two fields in the
application file's disk (this occurs in
sector 0 of the file), the VM file will be
accessed without a prompt for it.

You could probably also have a facility
for scanning the command line for user
entered parameters. This would be coded as
a FORTH word. Note that SYS+29 is the Code
Field Address of the FORTH word executed
after the VM file is initialized. If you
change this to be the CFA of your
parameter scanning word, it can then
address parameters. Of course, since this
procedure seems so straight forward,
perhaps it has already been done? You see,
the Model I/III and Model 4 versions of
HartFORTH are just two of many other
versions that have been implemented. Since
the model 4 version has been published for
a few years (in Europe), the items you are
looking for have had time to be
implemented by someone else. I'll pass
this question along to Molimerx.

The DO.SVC function is in screen 36. I
looked at this function. True, it is
written in machine code (actually, its in
the primitive assembler which permits you
to specify 16-bit hexadecimal values). If
you examine the code, it does the
following OPs: EXX.; POP HL; LD A,L; POP
HL; POP DE; POP BC; RST 28H; PUSH BC; PUSH
DE; PUSH HL; EXX. This is of course
prefixed by ;CODE and suffixed with END
CODE. Now Andrew Graham may prove me
wrong; but I think you should be able to
modify the routine so that IX and IY can
be loaded prior to the RST 28H and

restored afterwards. One proviso would be
that since HartFORTH uses the IY regi~ter
as a subroutine linkage instead of CALL
and RET, you may not be _ __ahl:e to utilize
the va-lue returned-in-lY-. In fact, I would
suspect that you would have to restore IY
prior to END-CODE to its value that
existed immediately following ;CODE since
END-CODE is coded as JP (IY). I would
suggest the following: EXX; POP HL; LD
A,L; POP HL; POP DE; POP BC; POP IX; EX
(SP),IY; RST 28H; EX (SP),IY; PUSH IX;
PUSH BC; PUSH DE; PUSH HL; PUSH AF; EXX.
That m_eans-------two a-ddiriomtr--±tems on the

-----s ta-ck (note where IX and IY would be). You
could name this one DOXY.SVC to keep it
separate when you needed to address IX
and/or IY. Since the assembler would
require the additional instructions in
hex, these would, of course, be: ElD9 El7D
ClDl ElDD E3FD FDEF DDE3 C5E5 E5D5 D9F5.

I will defer to Mr. Graham on points 1 and
3; however, Mountain View Press, PO Box
4656, Mountain View, CA 94040 [415-961-
4103] has an ad in March 85 BYTE which
lists over 25 books and papers concerning
FORTH. Although I have never dealt with
MVP, they do advertise a lot of FORTH
specific material."

The response from Andrew is rather
lengthy. But then, we rarely get exposed
to FORTH dialog so let's get on with it.
Andrew Graham writes, "I am very pleased
that Matthew seems to be satisfied with
his purchase of HartFORTH. I am impressed
with the speed with which he seems to have
come to grips with the language. To deal
with his queries in order.

1) Yes, I regret that the doublequote
operator cannot generate a null string.
This is due to its use of the word WORD to
accept the string from the input stream.
As WORD will ignore leading delimiters
(this is -necessary to allow multiple space
characters between words as the compiler
uses 32 WORD to parse the input stream)
then trying to invoke a null string will
have the following effect.

If " " (note the single space) is used
then the first quote and its following
space ··are used to identify the doublequote
command leaving the input pointer pointing
to the second double quote. As the first "

The Tower of Babel - 41 - The Tower of Babel

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

uses 44 WORD to get the next string of
characters terminated with a ti and ·,
because _-.WORD will ignore leading
delimiters then--~ second It will be
ignored as a leading cieiimitu and the
following characters will be read in the
search for the final II .
This may be demonstrated by entering
"NILL " 11

; from the keyboard which will
cause a compile error as the; is ignored
for the reasons explained above.

~~y~ound - this is- as'Matthew states,
but his coding should be

"NILL PAD 0 OVER C ! ;

I usually generate a null string as
follows: CREATE "Z 0, or equivalently: 0
CONSTANT "Z which leaves the address of a
zero when "Z is invoked. If " 11 (two
spaces) is used then a string comprising a
single space results.

2) It is important to note that both IX
and IY need to be preserved as well as BC.
IX holds the return stack pointer, (the SP

VARIABLE OLD.IX VARIABLE OLD. IY

CODE DOXY. SVC

is the data stack pointer) and IY holds
the address of the inner interpreter while
BC is FORTH's program counter used to
point to the CFA of the next word of a
definition to be executed.

Roy's suggested coding saves IY but not IX
and could cause the system to crash if IX
is altered [sorry, I didn't know that IX
was used -Roy]. I suggest that the easiest
route might be to save IX and IY to
explicit variables and restore them after
the SVC call but before the END-CODE thus
~voiding some messy stack manipulations.

Incidentally, I have assumed, and appear
to be correct (at least so far) that DOS
does not use the alternate register set
and normally preserves IX and IY except
where documented in an SVC [that's true
for LOOS and TRSDOS 6 -ed]. The EXX
therefore serves to save BC, and should
occur in any CODE word that wishes to use
BC, DOS appearing to take care of IX and
IY except where documented.

The following FORTH code word should
achieve the desired effect.

(exx pop hl
D9 C, El C,

ld a,1 pop hl pop de pop be)
7D C, El C, Dl C, Cl C,

(ld (old.ix),ix
22DD, OLD.IX,

ld (old.iy),iy pop ix pop iy rst28h)

(push iy push ix
ESFD , ESDD ,

22FD , OLD.IY, ElDD, ElFD, EF C,
ld ix,<old.ix> ld iy,<old.iy>)
2ADD , OLD.IX, 2AFD , OLD.IY ,

(push be push de push hl push af exx)
CS C, DSC, ES C, FS C, D9 C, END-CODE

This has the stack picture
OOXY.SVC (iy ix be de hl a-> iy' ix' be' de' hl' af')

The register sequence on the stack could
of course be altered as required.

3) As far as more documentation on the
ASSEMBLER vocabulary is concerned, I am
not sure that I can help. You can see
above how I code Assembler words when I am
more worried about them working than I am
about saving space on a screen. I merely
write them in Z80 assembly language and
then hand code them. Jumps are no problem
with the relative jump instructions, and
generally the routines should be short

The Tower of Babel - 42 -

enough for this to be no great pain. I
chose merely to provide a LABEL command
for subroutines called for CODE words and
a CODE command to specify low-level words
invokable as FORTH words as I believe as
little as necessary should be written at
low level. Further than that if it is the
Z80 architecture that you need information
on I would have thought that all you need
is a book on Z80 assembler language such
as Bill Barden's, and see if you can
persuade Roy to sell you one of the Micro
Logic Z80 · reference cards [we actually

The Tower of Babel

J
j

J
i

_j

J
J

J
I

J

J
J

J
J
J

J
J
J
l

_j

J
I

.....J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

still have a few of those plastic cards
left -ed]. There is a design for a more
complete Z80 assembler in Loeliger's book
Threaded Interpretive Languages together
with a description of how it works.

4) HartFORTH was intended from the outset
to generate
applications,
for its being

end user stand alone
in fact that was the reason

written in the first place.

I will try to explain the facilities that
are available by describing how HartFORTH
initializes itself.

Firstly it executes a very small section
of machine code to initialize its stacks
and registers and then it takes the word
from SYS+l9 and EXECUTEs it assuming that
it is the Code Field Address of a FORTH
word. Normally this would be the Virtual
Memory Initialization word. However, if
the final application does not need
Virtual Memory then the CFA of the final
application may be stored here. In this
case do not leave the application by the
word DOS which tries to close the VM file
but use the @EXIT SVC instead to re-enter
DOS directly.

If the VM Initialization word is executed

then it examines the byte count at SYS+31.
If that byte is zero it asks the user for
the filename, otherwise it uses the
filename stored at SYS+32. Then, as long
as the file is opened without error, it
takes the word at SYS+29 and executes it,
assuming again that it is the CFA of a
FORTH word. Normally this word is the CFA
of the word QUIT, but -you 111eyput tne CFA----
of an application here to make a stand
alone system.

As far as parsing the DOS command string
is concerned I must admit that I have not
catered for this possibility. However, it
can probably be added as follows.

I believe that the problem is that of
retaining BC or HL on entry to HartFORTH
as these point to DOS's command line and
are the only source of that address, at
least to my knowledge. Here is a short
patch to save one of these registers.
Fortunately the first few SYS bytes are
not used in the Model 4 version (or indeed
the Model I/III version) so the actual
code will go at the beginning between SYS
and SYS+6, and this will store the command
line address at SYS+27 which is also
unused in these versions. You could then
pick it out and use it as you wished.

HEX (all this is easier in hex)
SYS SYS 4; 3 CMOVE (copy initial jump to unused bytes)
0 SYS Cl 22 SYS l+ Cl (this is opcode for ld <nn>,hl)

(the zero is nop in case you wish to store be instead)
(in which case use ED SYS Cl 43 SYS l+ C!)

SYS lB + SYS 2 + (in proper numbers this is SYS+27)
DECIMAL
SAVE-SYSTEM

The address in 1il.. points to the first non
blank character after the command name, BC
points to the start of the command line.
Whichever you want you have in SYS+27 by
putting the appropriate op-codes at SYS
and SYS+!.

You could of course get more complicated
by·writing a LABEL word to parse the
command line and patching a jump to it at
SYS, jumping on termination of this LABEL
word to the original jump address at
SYS+!. This LABEL word could parse a

The Tower of Babel - 43 -

filename and write it as a string (upper
case please!) to SYS+31 for use as a VM
file. Note that if the VM file is
specified at SYS+31 and cannot be opened
then HartFORTH will immediately retry.
This causes a loop that needs reboot if
the error is persistant.

I hope this is useful. Please check
carefully the above, the flavour is right
but the machine coding could do with an
indepenmdent check as I haven't had time
to try it all."

The Tower of Babel

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

Macros by Timothy Adye

For those of you who have been with us for
awhile and recollect the sprinklings of
quotations from THE HITCHHIKER'S GUIDE TO
THE GALAXY, you will appreciate the
following letter from Timothy Adye. Tim's
home--- isih Eng1.and - also the origins of
one Arthur Dent.

"Let me first express my support for the
Model I! I do hope that you continue to
support this machine. I have been using it
now since 1980 [Tim's letter was dated 3rd
February 1985 -ed] with only one fault
(the expansion interface cable) despite
extremely heavy use of maybe 14 hours a
day. Since I got LOOS and EDAS, it has
compared favorably in all but graphics
with many later machines. Having written
an LOOS utility for sale for use with both
the Model I and III, I found that it was
not that difficult to support both
machines. I hope that you find the same is
true.

As a digression from matters computational
("Yes - I know Marvin - but shut up, this
is organism talk"), have you heard of ZZ9-
Plural-Z-Alpha? This is an international
Hitch-Hiker's Guide fan club based in the
UK. You're probably already a member, [not
really -ed] but if not, you might like to
know that they produce a quarterly
magazine/newsletter, "Mostly Harmless", a
fanzine, "Gargleblaster" (though you
should read the advice on the front:
"Warning: This zine has much the same
effect"), and are running a Con this
summer ("Lazlar Lyricon" - it took me a
while to work out that reference: the
maker of custom-built "bourge-mobiles", to
be identified by the infra-pink lizard
emblem), though I suppose that this would
be rather out of your way [also too late
for our readers considering when I got
this into print -ed]! For more information
write to:

Hohn 'Grandad' Philpott
78 Watling St.
Bexleyheath, Kent
DA6 7QQ, ENGLAND

Enough of this frivolity, onto more
important questions (no - not "Why are men
born, why do they dye, (why can't they

The Programmer's Corner - 44 -

spell die),
intervening
watches").

why do they spend most of the
time wearing digital

I am a proud owner of EDAS (sorry - it
does sound rather like a shoe
advertisement), and will certainly be
ordering the new version from Molimerx as
soon as they tell me they have it. At the
moment I use it to write and maintain a
book cataloging program for an antiquarian
book business, which consists of more than
l00K of source code (you couldn't do that
using EDTASM). One interesting feature is
that it has its own disk I/O routines.
This is to speed up disk I/O since the
sectors do not have to be interleaved. It
can search an entire 3/4M disk in just two
minutes for any piece of information. It
is self booting, and requires no DOS or
any ROM routines, so it is quite easily
transportable to other Z80 machines (I
realise that this is a debatable point,
but it does also mean that all of the
routines work the way I want them to). I
have also written several LDOS utilities
including ACCESS, which Molimerx is
selling.

Concerning the bug in macro handling with
*GET, I had the same problem, and put it
down to not understanding how to use them
(they worked for test files but not in my
large program with lots of *GETs). I shall
refrain at this point from making comments
about the Sirius Cybernetics Corporation,
since you did supply a patch as soon as
you found out.

Here are a few tid-bits for EDAS
programmers. The following macro and
subroutines are very nice in assembler
programs that display a lot of messages
(for example interactive programs). It
need only be typed in once and then put
into a module or PDS.

MSG MACRO 1/:Ml , 1/:M2 , 1/:M3
IFDEF ENDMSG
IFNE ENDMSG,$
CALL DSPMSG
ENDIF
ELSE
CALL DSPMSG
ENDIF
IFEQ %%,1
DB 1/:Ml

The Programmer's Corner

J
i

J
i
I

_j

J
I

,J

I ---

I
I

_J

I

I

J
J

I
I

.....J

J
I

_;

J
i

J

I

_j

J
i

j

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

ENDIF
IFEQ %%,2
DB #Ml ,i'FM2
ENDIF
IFEQ %%,3
DB #Ml , i'FM2, i'FM3
ENDIF

ENDMSG DEFL $
ENDM

DSPMSG EX (SP) ,HL
PUSH AF

DSPMl LD A, (HL)
INC HL
OR A
JR Z,DSPM2
CALL @DSP
JR DSPMl

DSPM2 POP AF
EX (SP) ,HL
RET

To use this, simply put in your program:

MSG 'This is a message',13
MSG 'With two lines',13,0
LD A,0
MSG 'New string here' ,13,0

The MSG macro will put a CALL DSPMSG
before each string, unless the previous
byte was the end of another message, in
which case it can all be done at once. Put
a null (zero byte) to terminate the
message after the last string.

To further demonstrate the beauty of
macros, you can add what looks like more
op-codes to the Z80. For example, the
three byte "opcode", EXCH (EB,E3,EB) will
exchange DE and (SP),

EXCH MACRO
EX
EX
EX
ENDM

DE,HL
(SP) ,HL
DE,HL

or the two byte opcodes MOV dd,ss (e.g.
MOV BC,DE is 42,4B) will do 16-bit
register to register LDs. My favourites
are SHOVE aa,bb, ••• and TUG aa,bb, •••
(which require slightly more complex macro
definitions), which are similar to PUSH
and POP, except they do it for more than
one register.

The Programmer's Corner - 45 -

Well, I'm sure you've had quite enough of
that, so I'll sign off there. May all your
Gargleblasters be pure gold."

POKEPR by Roy Soltoff

One of my customers wanted a little
program to be able to poke values to the
printer from the DOS Ready command line.
That was an easy one to whip up. The
following POKEPR program is for use with
TRSOOS 6. It will accept a series of
decimal values separated by a <SPACE> and
terminated with an <ENTER>. For example,
if you wanted to send the string "27 18"
which sets a DMP-500 to correspondance
quality characters, type the command

POKEPR 27 18<ENTER>

Here's the program:

ORG 2600H
POKEPR LD A,96 ;@DECHEX

RST 40
LD A,6 ;@PRT
RST 40
LD A, (HL)
INC HL
CP 13
JR NZ,POKEPR
SBC HL,HL
RET
END POKEPR

This program is so
entered using the DOS
the HEX parameter:

;For exit

short, it can be
BUILD command with

BUILD POKEPR/CMD (HEX)
01 ·· ., •. ,. 3E 60 EF 3E 06 EF 7E 23

FE OD 20 F4 ED 62 C9 0-,~,._,,,:..

<BREAK>

UNLOCK by Peter Lengsfeld

Back in July of last year, Peter Lengsfeld
wrote me a letter in which he said, "I
would like to start by letting you know I
very much enjoy using your utilities.
Together with my Model 4P, I feel I have
an unbeatable combination. I certainly
hope market conditions will enable you to
continue providing top quality software
for some time to come. Thanks to PRO-NTO,

The Programmer's Corner

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

I have been
for a full
such items

able to make
time computer
as a calendar,

room on my desk
by eliminating

Rolodex file,

of DISK-NOTES. In one way it is a thank
you to all of the other individuals who
have previously submitted many fine and
useful programs. The program is entitled
UNLOCK/CMD and is a machine language
program to decode BASIC programs saved
with the ",P" option available with BASIC
01.01.00. The program was written to run
on a Model 4/4P under 6.x." Well here is
the program which is also included on
DISK-NOTES 5.

note pads, etc ••• "

Peter went on to make some suggestions for
changes and additions to certain pieces of
our software. He then closed with, "The
disk enclosed with this letter contains a
program that I would like to submit to you
for possible inclusion on your next issue

The

•-k=*=* J

J

·*=*=* J

@HIGH$
@OPEN
@CLOSE
@FSPEC

UNLOCK PROGRAM
By Peter Lengsfeld
Mar. 20th, 1985

EQU 100
EQU 59
EQU 60
EQU 78

@FLAGS$ EQU 101
@READ EQU 67
@WRITE EQU 75
@KEYIN EQU 9
@DSPLY EQU 10
@INIT EQU 58
BUFPTR EQU 3
EOF EQU 8
NRN EQU 10
ERN EQU 12
@ERROR EQU 26

ORG 3000H
•-k=*=*
' INITIALIZE
•-k=*=*
' START LD (STACK), SP
BGNMEM EQU $-4
ENDMEM EQU $-2

LD HL,MSGl
CALL DISPLY

GETINP CALL NZ,INVAL
LD HL,MSG2
CALL CKSPEC
JR NZ,GETINP
LD A,@FLAGS$
RST 40
PUSH IY
POP DE
LD HL, 'S'-'A'
ADD HL,DE
SET 0, (HL)

•°k=*=*
' ; OPEN FILE
•-k=*=*
' CALL POINT

LD A,@OPEN

Programmer's Corner

;save return point

;logon msg

;prompt for input file
;get keyboard input line

;point to base of flags

;put in DE

;offset for SFLAG$
;add offset to base
;dont check LRL, force READ

- 46 - The Programmer's Corner

J Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

I

J CALL DODOS
•ir=*=* ,

I LOAD BUFFER WITH FILE USING
I ; FASTFILE TECHNIQUE

......J •ir=*=* ,
FASTIO LD HL,0 ;lets get HIGH

I LD B,L ;SVC requires B=O
_j LD A,@HIGH$

RST 40
I CALL SETSUB

J LD HL,BUFFER ; have room for
AGAIN LD (FCB+BUFPTR) ,HL ;put buf addr in

LD A,@READ ;FCB
I

RST 40 ; READ sector I
J JP NZ, CKERR ;is err EOF or DOS?

INC H ;inc buf addr

I
DJNZ AGAIN ;keep reading sectors
PUSH HL ;save

-..J LD HL, (FCB+NRN) ;check if ERN was last
LD DE, (FCB+ERN) ;to fit in end of mem

J OR A
SBC HL,DE
POP HL

I JP NZ,NOMEM
I ISEOF LD A, (FCB+EOF) ;get EOF offset byte I
I DEC A __,

LD E,A

J LD D,O ;DE= offset of EOF
DEC H ; backup 1 full sector
ADD HL,DE ;add offset
INC HL

J LD (ENDMEM) ,HL ;store end of buffer
·*=*=* ,

CALL CLOFIL ;close file
i LD HL, BUFFER ;check to see if file

J LD A, (HL) ;is a protected BASIC
CP OFEH ;program
JP NZ, NOLOCK

J INC (HL) ;set to FFH
INC HL
LD (BGNMEM) ,HL

I CALL UNLOCK
I GETOUT CALL NZ,INVAL

__J

LD HL,MSG3
CALL CKSPEC

I JR NZ,GETOUT
__J CALL POINT

LD A,@INIT
I CALL DODOS
I LD HL, (E NDMEM) I _,

CALL SETSUB
LD C,L

I INC B
._J LD HL, BUFFER

WRMORE LD (FCB+BUFPTR) ,HL

i LD A,@WRITE

_J CALL DODOS

The Programmer's Corner - 47 - The Programmer's Corner
I
I

J

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986

•'k=*=* ,
*GET
,
•'k=*=* ,

INC H
DJNZ WRMORE
LD A,C
LD (FCB+EOF) ,A
LD A,@CLOSE
RST 40
JP NZ,ABORT
LD HL,0
JP QUIT

LOCKCODA
CLOSE FILE

CLOFIL LD DE, FCB
A,@CLOSE
40

LD
RST
RET

, GET KEYBOARD INPUT AND CHECK FOR VALID FSPEC
• 'k='k=* ,
CKSPEC CALL

LD
LD
LD
RST
JR
JR
LD
LD
RST
RET

POINT LD

•'k=*=* ,

LD
LD
RET

SETSUB LD
OR
SBC
LD
RET

•'k=*=* ,
INVAL LD
DISPLY LD
DODOS RST

JR
RET

DISPLY
HL,TEMP
BC, lFOOH
A,@KEYIN
40
C,ABORT
NZ,OOSERR
DE, FCB
A,@FSPEC
40

HI.., BUFFER
DE,FCB
B,0

BC, BUFFER
A
HI.., BC
B,H

HL,MSG4
A,@DSPLY
40
NZ, DO SERR

,
•'k='k=*

ERROR ROUTINES
,
CKERR CP

JP
CP
JP

DOSERR OR
LD

lCH
Z,ISEOF
!DH
Z,ISEOF
OCOH
C,A

The Programmer's Corner

;keyin buffer pntr
;lFH = max line input

;<BREAK> was pressed

;open file

;set LRL=256

;get start of BUFFER
;clear CARRY FLAG
;subtract (HIGH-BUF)
;num of sectors we

;EOF?

;past EOF?

;set short msg

- 48 -

Volume I.i

The Programmer's Corner

J
J
J
J
J
J
J
J
I __,

I
_J

J
J
J

I
...J

I
I

_J

J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986

LD
RST

ABORT LD
QUIT LD
STACK EQU

RET
;*=*=*

A,@ERROR
40
m.,-1
SP,$-$
$-2

' ;*=*=*
ERROR MES SAGES

NOLOCK$ DB
NOMEM$ DB

'NOT a PROTECTED BASIC PROGRAM',ODH
'File to large',ODH

NOLOCK LD
DB

m.,NOLOCK$
ODDH
m.,NOMEM$
A,@DSPLY
40

NOMEM LD

' ;*=*=*
MSG!
MSG2
MSG3
MSG4
;*=*=*
' ·*=*=* ' TEMP
FCB
BUFFER

;*=*=*

;
·*=*=* ' UNLOCK

UNLOCK!

LD
RST
JR

MESSAGES

ABORT

DB 'UNLOCK By P. Lengsfeld',ODH
DB OAR, 'Enter LOAD filespec •• > ',03H
DB 'Enter SAVE filespec •• > ',03H
DB OAR, 'Invalid filespec',ODH

END

EQU $
EQU TEMP+32
EQU FCB+32<-8+1<8
END START

UNLOCK ROUTINE
THIS ROUTINE IS USED TO UNLOCK BASIC
PROGRAMS SAVED WITH "P" OPTION

NOTES:

LD
LD
LD
OR
SBC
RET
LD
LD
ADD
LD
LD
LD
LD
SUB

ROUTINE SHOULD BE CALLED FROM MAIN PROGRAM
BGNMEM SHOULD POINT TO FIRST CHAR AFTER OFER
ENDMEM SHOULD POINT TO LAST CHAR +l

BC, ODOBH
DE, (BGNMEM)
m., (ENDMEM)
A
HL,DE
z
m., TABLEl
A,L
A,B
L,A
A,H
H,A
A, (DE)
C

The Programmer's Corner - 49 -

Volume I. i

The Programmer's Corner

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

XOR (HL)
PUSH AF
LD
LD
ADD
LD
LD
LD

--- - POP
XOR
ADD
LD
INC
DEC
JR
LD

UNLOCK2 DEC
JR
LD
JR

HL, TABLE2
A,L
A,C
L,A
A,H
H,A
AF
(HL)
A,B
(DE) ,A
DE
C
NZ,UNLOCK2
C,OBH
B
NZ,UNLOCKl
B,ODH
UNLOCKl

TABLE! EQU
DB

TABLE2 EQU
DB

•-k=*=*

$-1
OFBH,OD7H,1EH,86H,65H,26H,99H,87H,58H,34H,23H,87H,OE1H
$-1
4AH,0D7H,3BH,78H,02H,6EH,84H,7BH,OFEH,OC1H,2FH

' END OF UNLOCK CODE

BASICSVC by Robert M. Connors

Speaking of BASIC, Robert M. Connors also
wrote me last year with a couple of things
for "NOTES". Now Robert has been a
customer of mine for about as long as I
can remember. He has kept me on my toes on
more than one occassion - primarily over
bugs in earlier versions of EDAS. In any
event, Bob writes, "I have enclosed a few
things with this letter. First is a
procedure I use to create /LIB files for
use by EDAS. The second thing concerns the
CALLing of any DOS 6.x SVC by a BASIC
program. I know that you usually do not
deal with BASIC issues, but this is really
a machine language routine for use by
BASIC [actually, now that MISOSYS has
released a BASIC compiler, we will be
dealing more and more with "BASIC" issues
-ed]. You may want to include these two
items in your next issue of NOTES."

[For those readers interested in the
library creation procedure, it is included
in this issue over in the PaDS section.
The BASIC SVC interface follows here. It
may be interesting to point out at this

The Programmer's Corner - 50 -

time that the BASIC in the TRSDOS 6.3
version to be released by Logical Systems,
Inc., sometime after the first of the year
will support a means of directly invoking
DOS service calls via USRlO. -ed]

If you look in your Model 4/4P BASIC
manual under 'CALL', you will note that
upon entry to a machine language routine,
the HL register pair points to the first
parameter, DE the second, and BC the third
unless there are more than 3, in which
case BC will point to the LSB of the
remaining parameters. The problem here is
that the machine language subroutine must
know how many parameters there are while
SVC routines use any number of parameters.
The solution, which this routine provides,
is to put all the SVC parameters into one
CALL parameter and let HL point to it on
entry. That way, we need not concern
ourselves with the number of parameters
nor where they are located. On entry to
this machine language routine, HL will be
pointing to the contents of PARAM# and we
are not concerned about where BC and DE
point.

The Programmer's Corner

J
i

J

J
J
J
I

_J

J
J
J
J
J

J

I

I
_J

J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

This routine, CALLed from BASIC 01.01.00
(under DOS 6.2.x), will perform any SVC
that is available, except the @BANK SVC.
The @BANK SVC cannot be used because BASIC
itself overlaps address 8000H which is the
start of the next bank, not to mention the
fact that the BASIC program which calls
the SVC is also in the bank of memory that
will be swapped out. Therefore, the
program would crash if the @BANK SVC is
invoked.

To use this routine, include the following
lines in your BASIC program:

DIM ROUTINE$,A%,BC%,DE%,HL%,I%,
PARAMffo,SVC%, V%

DATA 126,35,78,35,70,35,94,35
DATA 86,35,229,221,225,221,43,221
DATA 110,l,221,102,2,239,201,-l

WHILE I%=>0
READ I%
IF I%>0 THEN ROUTINE$=ROUTINE$+

CHR$(I%)
WEND

The DIM statement sets aside memory and
predefines the variables we are using. The
DATA statements are the decimal
equivalents of the machine language
routine shown below. After reading, this
entire machine language subroutine will be
contained in ROUTINE$.

Somewhere in your program, include the
following subroutine:

A%=0:BC%=0:DE%=0:HL%=0:RETURN

As can be seen, this sets the variables
used to zero so that any previously
assigned values are erased. This
subroutine must be called prior to setting
the values of these variables.

As you must have figured out by now, A%,
BC%, DE%, and HL% are the variables which
will hold the values for register A, and
register pairs BC, DE, and HL
respectively. To pass a value to any of
the registers, use statements similar to
these,

LET A% = a
LET BC%= CVI(CHR$(c)+CHR$(b))

The Programmer's Corner - 51 -

where 'a', 'c', and 'b' are the values to
pass to registers A, C, and B
respectively. Note that A% is assigned the
actual number, but BC% is assigned the
values as if we were converting it from a
value just read in from a random disk
file. Also note the order in which the
values for BC% were specified (LSB/MSB).
If no value is to be assigned to register
C, then 'c' should be O. This also applies
to all other registers when the value
should be zero. Register A must always
have a value since it will contain the
number of the SVC you want to perform.

Once all
BC%, DE%,
routine:

the values are assigned to A%,
and HL%, GOSUB to the following

I%=VARPTR(PARAMfF) :POKE I%,
PEEK(VARPTR(A%))

I%=I%+1:POKE I%,PEEK(VARPTR(BC%))
I%=I%+1:POKE I%,PEEK(VARPTR(BC%)+1)
I%=I%+1:POKE I%,PEEK(VARPTR(DE%))
I%=I%+1:POKE I%,PEEK(VARPTR(DE%)+1)
I%=I%+1:POKE I%,PEEK(VARPTR(HL%))
I%=I%+1:POKE I%,PEEK(VARPTR(HL%)+1)
V%=VARPTR(ROUTINE$)
SVC%=CVI(CHR$(PEEK(V%+1))+

CHR$(PEEK(V%+2)))
CALL SVC% (PARAM#)
RETURN

The first thing that this subroutine does
is find where in memory the double
precision variable PARAM# resides. Once it
is found, it pokes in the values for A%,
BC%, DE%, and HL% in that sequence. A
double precision variable was used because
it takes up eight bytes in memory, and we
need seven bytes to hold our register
values. A string could be used, but that
would require more code.

Next, the subroutine finds ROUTINE$ in
memory, and assigns the memory address of
the string to SVC%. SVC% is called using
PARAM# as the only parameter. The machine
language routine in ROUTINE$ then picks up
each of the register values and assigns
them to the appropriate register and then
executes the desired SVC.

With some thought, both the BASIC program
and machine language routine could be
modified to perform functions other than a

The Programmer's Corner

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

SVC. Also, you could conceivably pass
values back to BASIC through PARAH.#.

The following assembly listing is the
source code for the routine contained in
the BASIC DATA statements above. On entry
to this routine, HL points to the data
contained in PARAH.#. The data, of course,
must be transfered to A, BC, DE, and HL
before it can be used. This is the purpose
of the routine, and the comments pretty
much document what is going on. I point

out, however, why it is necessary to
decrement IX before transferring data to
register pair HL. BASIC uses a OOH byte to
indicate an end of a line and the end of a
string. Since the command, "LD HL,(IX)" is
actually a "LD HL, (IX+OOH)" which will
generate a OOH byte, we cannot include it
as part of ROUTINE$ or else BASIC will
interpret it as the string end. So we must
decrement IX in order to prevent premature
termination of the machine language
routine in ROUTINE$.

USRSVC LD
INC

A, (HL)
HL

;get service number
;bump pointer

LD C,(HL)
INC HL
LD B, (HL)

;get value

'

for
BC

INC HL ; bump pointer
LD E, (HL) ;DE value
INC HL is
LD D, (HL) ; next
INC
PUSH

HL
HL

;bump pointer
;transfer pointer

POP IX to IX and backup one byte to avoid
DEC
LD

IX
L, (IX+OlH)

a OOH byte in BASIC's ROUTINE$
;get HL

LD H,(IX+02H) ; value
RST
RET

28H ;perform requested SVC
; back to BASIC

END

RELOCATABLE ASSEMBLERS by Roy Soltoff

It's time now for me to add my two cents
concerning programming. With the release
of my MRAS relocatable macro assembler
last Fall, I thought it appropriate to
speak a little about these types of
assemblers. First of all, let me clear up
an understanding of the term
"relocatable". A lot of folks biting their
assembler teeth on the TRS-80 have been
taught that a relocatable program was one
that was able to be run at any memory
location in the TRS-80 usable address
space. Such an understanding is not hard
to grasp. In fact, I recollect many
potential DSMBLR customers asking me about
that very point is the disassembler
relocatable? That question was asked
because they wanted to disassemble
something in memory and did not want the
disassembler itself to load over the
program that was the intended target of
the disassembly. Well,- DSMBLR was not

The Programmer's Corner - 52 -

relocatable but it allowed for the
targeted program to be moved to some other
non-interfering address. Neither is MRAS
relocatable; it is designed to load and
execute at a particular address. Nor are
ALDS, M80, and MZAL relocatable. They all
load and execute at specific addresses.

The term "relocatable" as applied to these
types of assemblers is that they usually
do not directly generate an executable
program file [I say "usually" because MRAS
has a switch to do just that]. What they
do is generate an intermediate file which
is not address specific as far as its
execution address. This file can be
processed by another utility called a
linker with the actual process being
called "linking". During the linking
process, the intermediate file can be
linked with other already assembled
modules and can be specified to originate
at a defined address. It is because these
intermediate files can be relocated by the

The Programmer's Corner

J
J
J
J
J
J
J
J
J
I

..J

J
I
I

__,J

J
J
J
j

J
J
J

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

linker that we coin the term, relocatable.
In fact, the intermediate files usually
have a file extension of "REL".

So what's the big deal? Why go through
another step before you can get to a
runnable program? The answer has to do
with program development. Some companies
use the term "program development system".
Anyone who has written a program of
substantial size regardless of the
language used has realized that managing
the task of developing the program is as
important as the programming itself. For
large scale programming projects, it is
absolutely essential that program
development be properly managed. Many
times, the task of programming is divided
up amongst many programmers. Even if one
programmer is tackling the entire job, he
or she will find it infinitely better to
break up the programming into small,
easily managed modules. Modules are
designed to be standalone, usable as
functions or subroutines for other
modules. The relocatable assembler has the
advantage of. being able to link many
modules together. Since they are already
assembled, time is saved. If the
programmer was using an assembler which
required all modules to be assembled
during the assembly process, it could take
a lot longer to test one little change.
Besides, programmers have found over the
years that they could reuse many of the
functions developed for one program in
other programs. These wise programmers
have built up libraries of functions and
routines to aid them in their program
development.

Now the EDAS/PRO-CREATE assembler
certainly provides the ability of
utilizing libraries of routines. The
"*SEARCH" process was developed
specifically for the needs of the LC
compiler we released over three years ago.
This assembler has served us well and
continues to serve us for most of our
needs. Of course, when LC was compiling a
large program, the necessity to assemble
the entire set of libraries for one little
change precluded that assembler
environment for our MC compiler - the MC
compiler needed something more. That
something was the ability to separately
assemble modules and link them together

The Programmer's Corner - 53 -

with the already assembled library
modules.

Linking together already assembled modules
can also be done by an assembler such as
EDAS. In fact, The first version of EDAS
[version 3.4] was assembled by our disk
modified EDTASM. The source code consisted
of two files. Now what is usually the case
when you have more than one source file is
that there are symbols in one file which
are accessed by the other. What I had to
do was to assemble EDASl/ASM then alter
the EQUates in EDAS2/ASM for any symbol
used by EDAS2 which was in EDASl. That
wasn't too much work; but then I had to
assemble EDAS2 and note any symbol in it
which was used in EDASl. Thus, I usually
had to go back to EDASl and change some
EQUates in it then reassemble it. This
iteration had to be redone for every
change which affected any symbol used by
one file which was defined in the other.
Now you can understand why the "generate
EQU file" facility was programmed into
XREF! How does a relocatable assembler
make this easy?

MRAS provides two special pseudo-OPs
called PUBLIC and EXTRN (which is short
for external). Some assemblers use GLOBAL
or ENTRY for PUBLIC - MRAS accepts all
three. MRAS also accepts EXT for EXTRN.
Here's how we use these pseudo-OPs. If we
have defined a symbol in one module which
we want to use in other modules, we
declare the symbol PUBLIC in the module
where it is defined. Some assemblers, such
as MRAS, allow us to declare a PUBLIC
symbol by appending two colons after its
identifier. Now any other module which
wants to use that symbol simply declares
it EXTRN. This can be done by an explicit
EXTRN statement, or in the case of MRAS
and M8O, by appending two numbersigns to
the end of the symbol where it is
referenced. This process tells the
assembler, in the defining module, to
write information about the public symbol
in the REL file. Similarly, all modules
which have the symbol declared external
will have this information written to
their REL files. The information is used
by the linker during the linkage process
to resolve the absolute address of the
public symbols where needed by those
modules declaring them external. This

The Programmer's Corner

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

external symbol resolution is the
automatic process of the tasks I outlined
above for generating EDAS 3.4. Let me tell
you, it's far easier to resolve those
externals in a relocatable assembler -
especially when you can have hundreds of
such "cross-used" symbols amongst dozens
of REL modules.

Another good use of this PUBLIC and EXTRN
business is actually NOT using it on
symbols which you don't want to consider
as public. Unless a particular symbol is
declared PUBLIC, its symbol identifier is
not known to any other module. Thus, that
identifer may be reused in other modules
without any conflict whatsoever. Symbols
which are not declared public are known
only to the module which defines them;
they are considered LOCAL symbols.

The next topic concerning relocatable
assemblers is the use of segment
identifiers. But first, we have to define
this term, 11 segment". For the typical TRS-
80 program, there is absolutely no reason
to differentiate between pieces of the
program module which actually contain
program code and pieces which contain data
areas. The program code is the actual
machine instructions which get executed by
the CPU whereas the data area is
referenced by the machine instructions for
storing bytes or "words". If we want to
assign a name to each area, we use the
terms II code segment" and "data segment 11

• A
particular reason to "segment" a program
into code and data regions is when the
program is to be encoded in a read-only
memory (ROM). For instance, the BASIC
interpreter of the Model I or III computer
is in a ROM. Since it accesses data areas
which must be in read/write memory (RAM),
it requires that the interpreter's source
code be written in such a manner that the
data segments are isolated from the code
segments. In that way, the data segment
can be declared to originate in the RAM
address space of the machine. The linker
usually has a facility for this address
designation.

Now, don't get the wrong idea. It doesn't
require a relocatable assembler to provide
for more than one segment type. An
absolute code generating assembler such as
EDAS provides internally for only one

The Programmer's Corner - 54 -

segment - it doesn't care whether this is
code, data, or anything else. However,
with the use of the DEFL pseudo-OP and
some clever programming, more than one
segment could be utilized. This technique
is discussed in the EDAS user manual.
However, the clever technique is made a
little easier with the segment pseudo-OPs
such as CSEG, DSEG, and COMMON. COMMON?
What's that all about?.

My first exposure to a COMMON segment was
rooted in my early FORTRAN programming
days. Let's take a look at what it can do
for us. Let us say you have a data segment
which is to be accessed by many other
modules. You would need to declare each of
the symbols in this segment as PUBLIC.
Then, in every other module, you would
need to declare those symbols as EXTRN.
Another way of accomplishing this would be
to define the data areas as being in a
COMMON segment. The declarations would
most likely be input into a separate file
which would then by *INCLUDEd into those
files needing access to the data. This may
not sound like an easier method because
the EXTRNs in the former DSEG method may
be just as well included in a separate
file! But there is also another reason.
Just as the linker has a means of placing
code segments and data segments at address
spaces specified by the programmer, it can
do the same for a COMMON segment, as well.
In fact, most assemblers and linkers
support NAMED COMMONs so you can specify a
multitude of common segments each
distinct. The usual rationale for such a
facility is in more complex operating
environments using overlays of program and
data spaces. You may still find large
program environments operating on the TRS-
80 built up from an approach of a ROOT
segment and overlay modules. On the other
hand, I don't find much use for COMMON in
the TRS-80 environment.

Now that we have touched on the segment
issue, when do you need to deal with it.
In most cases, you don't. There is no
restriction on code being only in a code
segment and data only in a data segment.
You can put code into a data segment as
well as you can put data into a code
segment. Unless you need to segregate your
code and data for other reasons, you don't
have to use a data segment. Unless

The Programmer's Corner

J
J
J
J
J
J
J
J
J
J
J

I

J

J
i
I

__J

I
I

--i

J
J
j

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

otherwise told by means of an explicit
segment pseudo-OP, MRAS defaults to an
assumed CSEG. It's perfectly suitable to
keep your entire program in a code segment
if your only intended use is for the TRS-
80. Of course, if you are building up a
library of modules, it won't hurt to keep
data separate from code and it may well be
helpful later on when those modules are to
be used under a different operating
environment.

I'll close with a caution. If you are
going to use MRAS to generate a program
from a single file which uses no
"relocatable" pseudo-OPs or techniques,
then use MRAS' "-GC" switch to directly
generate an executable program file. Don't
bother to generate the intermediate REL
file followed up by its linking. I state
this because a relocatable assembler
usually has restrictions on the evaluation
of expressions. These restrictions may be
more restrictive than those found in an
absolute code generating assembler like
EDAS, or MRAS itself with the 11-GC"
switch. One of the traps you can fall into
when you don't follow this advice is
discussed in the section on EDAS/MRAS.
Study it, and don't be afraid of jumping
into a relocatable assembler - now that
you know something about its environs.

MACHINE SENSING by Jeffrey R Brenton

It all started when someone put a request
up on the LSI board on CompuServe, looking
for an easy way to change the baud rate on
an LX-80' serial ports. Normally, you
would have to reset the device, then set
it to RS232x again. But this decreases
your available memory (RS232 drivers do
not re-use their old locations) and you
have to specify all the other parameters
again. It is just too much when all you
need to do is change from 300 to 1200
baud. I have the same need on my MAX-80,
as it uses much the same circuitry as the
LX-80 for its two ports, and had thought,
"I should write a little program to do
that." Well, now I had a REAL reason to do
it, FAME! (Remember the first steps to
becoming an expert assembly language
programmer? Well, forget them! By the 15th
time through a program with DEBUG to find
out why the system reboots after the sign-

The Programmer's Corner - 55 -

on message, all vestiges of ego will have
disappeared!) I soon had a working program
that would handle the Lobo MAX-80's ports
and, with a little patching, the LX-80's
as well. It was flexible, and in keeping
with my Philosophy of Perfect Inertia
(read laziness), it made use of system
calls to reduce my programming effort.

--------------- -The next step was to make some money on it
by writing an article for the Journal.
After reading my first effort, though, the
folks at LSI said, "It's too machine
specific. Could you make it so it runs on
all machines?" "Uh, yeah, I *guess* I
could ••••• " was my reply.

And so was opened that can of worms known
as hardware dependency. Telling a model I
from a model III is easy, but that is not
enough. With the model I, you have both
the Radio Shack expansion interface (with
one serial port) and the Lobo LX-80 (with
two). The LX-80 can be tested for by
looking for its special ROM located at
x'3000'. If the first byte in this area
isn't x'F3', the interface is not an LX-
80,

As for model III machines, there are
really three of them. There is the genuine
model III, the model 4 operating in model
III mode (both with a single port) and the
MAX-80 (with two), which emulates a model
III. A real model III can be told by
looking at location x'3029'. If this
location is non-zero, you have a real
model III. Both the model 4 and the MAX
have a x'OO'. How, then, can you tell a
MAX from a model 4?

Originally, you could find out by trying
to change a location in the ROM area. If
it changed, you had a MAX. If not, it was
a model 4. Enter Duane Saylor and MDISK4,
a program to allow you to use the extra
64K of RAM in the model 4 as a RAM-disk in
model III mode. To do this, Duane had to
copy the ROM into RAM and switch the
machine to all-RAM mode. This means that a
model 4 can now pass the MAX test. NOW how
could you find out? There are a few ways
that involve trying to switch banks, but
these are potentially destructive. After a
while,- · though, I did find a very reliable
and completely non-destructive test for
the MAX.

The Programmer's Corner

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

The MAX-8O (and the LX-8O interface)
supports a variety of disk drive-types.
There is a DIP switch on the back of the
keyboard unit to select the drive the
system will use for booting. Under LOOS,
this switch is memory-mapped to location
x'37F8'. Lobo, however, did not bother to
decode the two least-significant bits of

--~tbJ~actress. The -switch's value· can
actually be read from any address in the
range of x'37F8' through x'37FB'. The
test, then, is to compare any two of these
addresses and, if they contain the same
value, we have a MAX, as the 'C' ROM in
the model 4 contains some patch code at
these addresses.

Once I had this information, adding the
machine sensing code was easy. So easy, in
fact, that I added code to sense the model
4 in TRSDOS/LDOS 6.x mode, by looking at
the first memory address. All LOOS 5.1.x
systems contain a x'F3' ·here, which is the
'DI' (Disable Interupt) instruction, while
a 6.x system will contain a jump
instruction. If the program is used under
6.x, it must use SVC calls instead of the
more familiar 'fixed location' calls of
5.1.x and earlier.

The actual working part of this program is
very short - most of it is the machine
sensing code and tables for using the
@Param vector so thoughtfully provided by
LOOS. Although the manual is not exactly
self-explanatory on the use of @Param, Roy
Soltoff gave an excellent lesson on it in
the April 1, 1982 issue of the Quarterly
(page 42) and I will give a short one here
myself.

At the simplest, a program must provide a
table consisting of eight-byte entries,
with a x'OO' byte at the end of the table.
Each entry is six-ASCII characters
followed by a two-byte address, pointing
to where @Param is to store the result.

If an entry is less than six characters
long, it must be left-justified with
spaces. This format works with both
versions 5.1.x and 6.x. For the special
format allowed under 6.x, see Les
Mikesell's column in the October, 1983
Journal. You then load the DE register
pair with the address of the start of your
table, point HL at the command line (if
you have been REALLY lazy, it is still
pointed there from when LDOS gave your
program control), and call @Param (x'4476'
in the Model I, x'4454' in the MAX or
Model III, or SVC 17 under 6. x). @Par am
then looks at the rest of the command line
searching for matches to the table. If one
is found, it is evaluated and the result
is placed in the location pointed to by
the two-byte address in the table entry.
Clear as mud so far, right? Wait, it gets
better.

What do you get out of all this? Well,
@Param will evaluate decimal, hexidecimal,
string or flag type entries attached to
your parameters, and hand your program a
two-byte value depending on certain rules.
If the value is a string, @Param puts the
address of its beginning into the address
pointed to by the table. If it is a flag
(ON, YES and Y are true flags, OFF, NO and
N are false flags), either x'FFFF' (true)
or x'OOOO' (false) is used instead. As an
aside, the parameter by itself, as in
'INV', is considered true, while the
parameter with only an equal sign, as in
'INV=', is false. Hexidecimal and decimal
are converted to two-byte integers and
also put into the address the table points
to.

You should be familiar with how it works
already, as LOOS makes extensive use of
@Param throughout the system. Remember
BACKUP : 1 : 2 (MPW="PASSWORD", INV, NEW, Q=) ?
That is an example of @Param in action. In
the backup program, there is a table that
looks something like this:

TABLE DB
DW

'MPW
MPWADD

;Master password

;master password string is to
DB I INV I

DW INVFLAG
; files is kept

DB
DW

'I
INVFLAG

The Programmer's Corner

;pointer to where starting address for
be stored
;Invisible files
;pointer where flag for INVisible

;abbr. for INV
; same as above

- 56 - The Programmer's Corner

-

J
J
J
J
J
J
J
J
J
J

I __,

J
J

J
j

I
J

J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

DB 'NEW ;New files only
DW
DB
DW
DB

NEWFLAG
'QUERY I

QFLAG
'Q

;point to new-only flag
;Query on each transfer
;Where qflag is kept
;abbr. for QUERY

DW QFLAG ;same as above

more entries

DB 0 ;end of table

Ah ha, you say, some of those entries had
the same pointer! Yes, because @Param
will only take exact matches to your
table. Any alternate names or
abbreviations you want to accept must be
included in the table (except for the
special table arrangement allowed under
version 6, as noted by Les), but they
should point to the same address as the
'official' spelling. Backup will take both
'INV' and 'I' as meaning 'backup the
INVisible files', so both must have
entries in the table.

When our previous command line is
encountered by @Param with DE pointing to
this table, it will see that INV matches a
table entry. Since it is by itself, it
must be a flag, and x'FFFF' is put into
INVFLAG. The same is true for NEW. With
Q=, however, QFLAG will be filled with
x'0000'. What of MPW? Because a double
quote was encountered, this must be a
string entry, and MPWADD will have the
address of the first character in the

TITLE <SETBAUD/CMD)

string.

Now, you might wonder what happens to all
those other entries that backup allows.
The answer is nothing. If a parameter is
not entered, it is not changed. This
allows you to load your program with
default values for anything the user does
not specify.

What does all of this have to do with
changing baud rates? Plenty! With each
of these computers, there are 16 different
baud rates to chose from. The LX-80 and
MAX-80 also have two different ports to
worry about. I did not want to write 32
versions to cover all possibilities, so
some way was required of telling the
program what you wanted. That left 2 ways
of doing it, either parse the command line
myself (too much work!) or let @Param do
it and just grab the results. I, of
course, chose the easy way. Let's take the
program in pieces.

00100
00110
00120
00130
00140
00150
00160
00170
00180

;set baud rate without changing other parameters of RS-232C
;Syntax is: SETBAUD (300 {,A}) where 'A' can be either port
;or port B (Default A) and '300' is the baud rate desired
;(aborts if not specified)

port
A

@PARAM3 EQU 4454H
@PARAMl EQU 4476H
@DSPLY EQU 4467H

ORG 5200H

So far, it is just standard assembly
language. We explain who we are, what we
expect, and what we intend to do (You
comment your code like this, don't you?
No? You should!). Since @Param is
different for both model I and model III
systems, we define an EQUate for each. We
also will use @Dsply, so let's define it
too. Finally, we must tell EDAS where to
start loading code, hence the 'ORG 5200H'.

The Programmer's Corner - 57 -

Next slide please.

00190 START JP BEGIN
;We' 11 put the parameters here

00200 TABLE DB 'SO I

00210 DW TRYS0
00220 DB '75
00230 · DW TRY75
00240 DB '110
00250 DW TRYll0

The Programmer's Corner

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510

DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW
DB
DW

1 134.5 I

TRY135
'150
TRY150
'300
TRY300
'600
TRY600
'1200
TRY120
'1800
TRY180
'2000
TRY200
'2400
TRY240
'3600
TRY360
'4800
TRY480
'7200
TRY720
'9600
TRY960
1 19200 I

TRY192

00520
00530
00540
00550
00560
00570

DB 'A
DW PORTA
DB 'B
DW PORTB
DB 0

;End of parameter table

The first instruction is a jump to bypass
our table of parameters. This normally
won't be executed, because later we will
tell EDAS that the transfer address is
BEGIN. Following the jump is the table of
all baud rates supported by the hardware.
The order in this table is not important,
but I left them in lowest to highest
order. At the end of the list are the
entries 'A and 'B ,
corresponding to the two ports available
on the MAX-80 and the LX-80 interface. All
pointers refer to a table at the end of
the program, where I do want them in
order. This is to keep the code necessary
to compute the baud-rate mask value to a
minimum. Now, let's find which machine we
are on and act accordingly.

00580 BEGIN PUSH HL ;save command line pointer
00590 LD A,(0000) ;Test to see if this is
00600 CP 0F3H ;TRSD0S/LDOS 6.x system
00610 JR NZ,L6 ;it is, so jump
00620 LD A,(125H) ;test for model III
00630 CP 'I' ;if this is not 'I', this is a model I
00640 JR NZ,MODl ;so go to the code for model I
00650 LD A,(3029H) ;test for what KIND of model III,
00660 OR A ;i.e., III, 4 in III mode, or MAX-80
00670 JR NZ,M0D3 ;a non-zero value here means mIII
00680 ;We must now determine whether we are dealing with a model 4 in mIII
00690 ;mode or a MAX-80 under LOOS. On the MAX, location 37F8H i·s used for
00700 ;the boot-drive selection DIP switch, but the two low-order bits of
00710 ;the address are not decoded, so the DIP switch's value can be read
00720 ;from any address between 37F8H and 37FBH. On the model 4 in III
00730 ;mode, these locations all have different values. This is how we tell
00740 ;them apart.
00750 LD HL,37F8H ;first location of MAX DIP switch
00760 LD A, (HL) ;read DIP switch value
00770 INC HL ;point to next location
00780 CP (HL) ;same value?
00790 JR Z,MAX ;yes, this is a MAX-80
00800 ;Now that we have resolved which machine we're on, we can use this
00810 ;information to determine which way to call @PARAM and @DSPLY. All
00820 ;versions call the parsing routine through their own special @PARAM
00830 ;call, and PARSE returns the value to be used to set the baud rate
00840 ;in the A register unless an error is encountered in the parameter
00850 ;list, in which case it drops immediately into the error routine
00860 ;which will display a nasty message and abort.
00870 M0D3 CALL SIGNON5 ;tell everyone we're here (v 5.1.x LOOS)

The Programmer's Corner - 58 - The Programmer's Corner

J

J
J
J
J
J
J
J
J
J
J

I
J

J
I
I

l
....I

J
J
J

I
I __,

J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

00880 POP
00890 LD
00900 CALL
00910 JR
00920 MODl CALL
00930 POP
00940 LO
00950 CALL
00960 PUSH
00970 LO
00980 CP
00990 JR
01000 POP
01010 SETRS OUT
01020 L5EXIT LO
01030 CALL
01040 SBC
01050 RET

HL
DE, TABLE
PARSE3
SETRS
SIGNON5
HL
DE,TABLE
PARSE!
AF
A,(3000H)
OF3H
Z,LX80
AF
(OE9H) ,A
HL,DONEMSG
@DSPLY
HL,HL

01060 LX80 LO A,(PORTB)
01070 OR A
01080 JR Z,LX80A
01090 POP AF
01100 OUT (OEDH) ,A
01110 JR L5EXIT
01120 LX80A LO A,(PORTA)
01130 OR A
01140 JR Z,ERROR
01150 POP AF
01160 OUT (OECH) ,A
01170 JR L5EXIT
01180 MAX CALL SIGNON5
01190 POP HL
01200 LO DE,TABLE
01210 CALL PARSE3
01220 PUSH AF
01230 LO A,(PORTB)
01240 OR A
01250 JR Z,MAXA
01260 POP AF
01270 LO (37D4H),A
01280 JR L5EXIT
01290 MAXA LO A, (PORTA)
01300 OR A
01310 JR Z,ERROR
01320 POP AF
01330 LO (37DOH),A
01340 JR L5EXIT

;retrieve command-line pointer
;tell @PARAM where the table is
;parse command line using m3 @PARAM
;jump to R/S port setting routine
;same

as
, MOD3
;parse cmd-ln using ml @PARAM
;save the results for later
;Test for LX-80 interface as opposed

to a standard R/S unit
;there is a ROM at 3000H, so LX-80
;no ROM, so we can set R/S port
;load value into baud-rate generator
;Tell people we're done c,
; clear HL
;return to LOOS
;check if it is port A or B to be set
;non-zero value means yes
;zero means not port B
;restore baud-rate value
; set port B
;and exit successfully
;just in case user input 'A='
;we test for port A
;display the error message
;restore baud-rate value
; set port A
;and exit
;anounce our presence
;restore command-line pointer
;point to parameter table
;parse command line with mIII @PARAM
;save baud-rate value for later
;as with LX-80, we check port selected

;MAX baud-rate ports are memory-mapped
;save code by using MODl's exit routine

;restore baud-rate value

01350 ;This is where we start dealing with TRSDOS/LDOS 6.x systems
01360 ;Since the TRS-80 Model 4 is the only 6.x system so far, we
01370 ;will only deal with its port arrangement. The main difference
01380 ;between this section and the other machines is the use of SVC's
01390 ;for all system calls, instead of direct calls to fixed locations.
01400 L6 LO HL,SIGNON ;announce ourselves under 6.x
01410 LO A, 10 ; using @DSPLY SVC
01420 RST 28H
01430 POP HL
01440 LO DE,TABLE

The Programmer's Corner

;restore command-line pointer
;point to parameter table

- 59 - The Programmer's Corner

Volume I. i

01450
01460
01470
01480
01490
01500
01510

CALL
OUT
LD
LD
RST
SBC
RET

THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

PARSE6 ;parse command line
(OE9H),A ;set baud rate
HL,OONEMSG ;tell everybody we're done
A, 10 ;again, we use the @DSPLY SVC
28H
HL,HL ;clear HL

;return to TRSDOS/LDOS

Since I have managed the stack properly (no extra stuff left on it and pointing to the
same location as when LOOS gave SETBAUD control), a simple 'RET' instruction will send us
back to 'LOOS Ready'. This is because LOOS places the return address (x'402D' on version 5
systems) onto the stack, essentially 'CALLing' our program.

As you can see, I have added special code in both the LX-80 and MAX-80 sections to deal
with picking up the port selection, since each port is set separately. First the program
checks for port Band, if it was not the one selected, the program then verifies that the
user did not say to NOT program port A. This bit is not strictly necessary, but is added
to show how to deal with default parameters.

Now for part of the program that does the actual baud rate selection.
calls to @Param, move on to determining which rate was actually chosen,
result for use by the machine-dependent code.

01520 PARSE! CALL @PARAMl
01530 JR WHICH
01540 PARSE3 CALL @PARAM3
01550 JR WHICH
01560 PARSE6 LD A,17
01570 RST 28H

;use mI @PARAM
;then search for rate chosen
;use mIII @PARAM
;and continue
;use TRSDOS/LOOS @PARAM SVC

We start with the
then format the

01580 JR NZ,ERROR6 ;6.x requires special error routine
01590 WHICH JR NZ,ERROR ;command line error
01600 LD HL,TRY50 ;start of where @param put results
01610 LD C,0 ;C will hold baudrate when we finish
01620 LOOP LD A,(HL) ;check table entry for non-zero value
01630 OR A ;is it this one?
01640 JR NZ,GOTBAUD ;If A<> 0, this is desired rate
01650 INC C ;try next rate
01660 INC HL ;since each entry is two bytes long, we
01670 INC HL ;have to step twice each time
01680 LD A,C ;check to see if c is still valid
01690 CP !OH ;must be 15 or less
01700 JP C,LOOP ;still valid, so continue
01710 JR ERROR ;not valid, no baudrate found. give error
01720 ;Since R/S RS-232R boards require both the send and receive baud rates
01730 ;to be set separately, we must duplicate the value in the low-order
01740 ;bits of C in the high-order bits. We do this by moving C into A,
01750 ;rotating C four times, then adding the result to A before returning
01760 GOTBAUD LD A,C ;start conversion
01770 RLC C ;once
01780 RLC C ; twice
01790 RLC C ;three times
01800 RLC C ; four times and done
01810 ADD A,C ;add high-nibble to low-nibble
01820 RET ;then return to caller

The Programmer's Corner - 60 - The Programmer's Corner

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
j

J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

You will notice I started a counter in the C register with the value O. This corresponds
to the value that is placed in the baud-rate generator to obtain 50 baud, the first entry
in the table at the end of our program. Each time through the loop, we check A for a non
zero value. If we find one, we will have the right bit-mask in C to program the generator
for the rate that we are testing for. (This is why I want the second table to be in the
correct order) When the selected baud rate is located, we must duplicate its mask in the
high-order nibble of A before returning to the caller. This is because Radio Shack boards,
unlike Lobo, allow a different baud rate for transmit and receive. We must, therefore, set
both nibbles. The Lobo hardware ignores the extra bits.

01830 ERROR
01840
01850
01860
01870
01880
01890 ERROR6
01900
01910
01920
01930

LD
LD
CP
JR
CALL
JP
POP
LD
LD
RST
RET

HL,ERRMSG
A,(0000)
OF3H
NZ,ERROR6+1
@DSPLY
4030H
HL
HL,ERRMSG
A,10
28H

;here is where error message is displayed
;make sure this is not a 6.x system
;by looking for DI instruction
;use 6.x exit

;and jump to ABORT
;clear stack
;same as ERROR, except using SVC's

;because HL <> 0, this is an ABORT

Here is where we tell people that we did not understand their command line. The 'JP
4030H' sends us back to LDOS in a way that will stop any JCL file from executing further.
We do not want to compound one error by assuming the last command was executed correctly,
when the baud rate may be radically different from what we expect (ever run 19,200 baud
into a 300 baud modem?). Under 6.x, EXITing with HL <> 0 is the same thing.

01940 SIGNONS LD
01950 CALL
01960 RET
01970 DONEMSG DB
01980 ERRMSG DB
01990 DB
02000 DB
02010 DB
02020 SIGNON DB
02030 DB
02040 DB

HL,SIGNON
@DSPLY

;point to sign-on message
;display it
;and return to caller

'Baud rate changed',ODH
'Parameter error! Please re-check your command line.'
OAH,'Correct syntax is: SETBAUD (p,r)',OAH
'where pis either port A or port B, and r is the desired'
OAH, 'baud rate, i.e., SO, 75, 110, 134.5, 150, 300, etc.' ,ODH
1 SETBAUD/CMD, baud rate changer for 1

'TRS-80 and MAX-80 systems',OAH
1 (c) 1983 by Jeffrey R Brenton' ,ODH

These are all of our messages, along with the code to display the SIGNON message on
systems running LOOS 5.1.x. Notice that ERRMSG is defined on four different lines, and
SIGNON on three. Some of you that are unfamiliar with assembly code might wonder how the
system handles this. Quite well, actually. @Dsply will take a string, pointed to by HL,
and display it on the screen, starting at the current cursor position. It will keep
copying to the screen until it encounters either a x 1 03' (end-of-text) or a x'OD 1 (<er>).
You can get multiple lines displayed in just one call by using a x 1 0A 1 (linefeed) instead
of a <er> to end each line. EDAS will assemble these multi-line definitions into a
contiguous string of characters, with the last one being the <er> we add to the end. If
only BASIC made it so easy to make strings longer than normal program-line length! Last
slide, please.

02050 TRYSO DW
02060 TRY75 DW
02070 TRYllO DW
02080 TRY135 DW
02090 TRYlSO DW

The Programmer's Corner

0
0
0
0
0

;this is the table where @Param puts the
;results of parsing our command line

- 61 - The Programmer's Corner

Volume I.i

02100 TRY300
02110 TRY600
02120 TRY120
02130 TRY180
02140 TRY200
02150 TRY240
02160 TRY360
02170 TRY480
02180 TRY720
02190 TRY960
02200 TRY192
02210 PORTB
02220 PORTA
02230

DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
DW
END

THE MISOSYS QUARTERLY - SUMMER 1986

0
0
0
0
0
0
0
0
0
0
0
0
-1
BEGIN

;this is OFFFFH, to default to A

Volume I.i

This is our table that @Param is to use to store the results. Each parameter is given one
word (two bytes) for storing the result of parsing our line. Almost all are initialized to
0, except PORTA. This is because port A is our 'default'. We could make B the default,
but, whichever you use as a default, it should be the last one checked so as to make sure
no other selection was made.

How about that? A lesson in using a system vector, a series of tests that will uncover
the identity of the machine your program is running on and a useful program all in one!

Machine-dependent routines are normally to be avoided, but sometimes there IS a need to
know what the hardware supports. The machine-sensing routines within this program can be
of great value when you come up against such instances.

This program has also made very simple use of @Param. As you can see, there are many other
possibilities. With a few simple changes, you can add command-line interpretation to many
of the programs you write, which will save experienced users the "agony" of having
answering, one by one, all the questions your program needs answered as it runs. That is
what separates LOOS from most other 8-bit operating systems, in that the system provides
you with the tools necessary to build "friendly" programs without having to re-invent the
wheel everytime.

The Programmer's Corner - 62 - The Programmer's Corner

J
J
J
J
J
J
J

I
I

..J

I

J

J
J
J
J
J
J
J
J
J
J

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

Here is the HEX file listing of SETBAUD:

05 06 53 45 54 42 41 55 01 02 00 52 C3 94 52 35 30 20 20 20 20 AA 54 37 35 20 20 20 20
AC 54 31 31 30 20 20 20 AE 54 31 33 34 2E 35 20 BO 54 31 35 30 20 20 20 B2 54 33 30 30
20 20 20 B4 54 36 30 30 20 20 20 B6 54 31 32 30 30 20 20 BS 54 31 38 30 30 20 20 BA 54
32 30 30 30 20 20 BC 54 32 34 30 30 20 20 BE 54 33 36 30 30 20 20 CO 54 34 38 30 30 20
20 C2 54 37 32 30 30 20 20 C4 54 39 36 30 30 20 20 C6 54 31 39 32 30 30 20 C8 54 41 20
20 20 20 20 CC 54 42 20 20 20 20 20 CA 54 00 E5 3A 00 00 FE F3 20 78 3A 25 01 FE 49 20
lA 3A 29 30 B7 20 08 21 F8 37 7E 23 BE 28 40 CD 74 53 El 11 03 52 CD 31 53 18 13 CD 74
53 El 11 03 52 CD 2C 53 F5 3A 00 30 FE F3 28 OC Fl D3 E9 21 7B 53 CD 67 44 ED 62 C9 3A
CA 54 B7 28 05 Fl D3 ED 18 EC 3A CC 54 B7 28 70 Fl D3 EC 18 El CD 74 53 El 11 03 52 CD
31 53 F5 3A CA 54 B7 01 02 00 53 28 06 Fl 32 D4 37 18 CA 3A CC 54 B7 28 4E Fl 32 DO 37
18 BE 21 4F 54 3E OA EF El 11 03 52 CD 36 53 D3 E9 21 7B 53 3E OA EF ED 62 C9 CD 76 44
18 OA CD 54 44 18 05 3E 11 EF 20 31 20 lF 21 AA 54 OE 00 7E B7 20 OB OC 23 23 79 FE 10
DA 42 53 18 OB 79 CB 01 CB 01 CB 01 CB 01 81 C9 21 8D 53 3A 00 00 FE F3 20 07 CD 67 44
C3 30 40 El 21 8D 53 3E OA EF C9 21 4F 54 CD 67 44 C9 42 61 75 64 20 72 61 74 65 20 63
68 61 6E 67 65 64 OD 50 61 72 61 6D 65 74 65 72 20 65 72 72 6F 72 21 20 50 6C 65 61 73
65 20 72 65 2D 63 68 65 63 6B 20 79 6F 75 72 20 63 6F 6D 6D 61 6E 64 20 6C 69 6E 65 2E
OA 43 6F 72 72 65 63 74 20 73 79 6E 74 61 78 20 69 73 3A 20 53 45 54 42 41 55 44 20 28
70 2C 72 29 OA 77 68 65 72 65 20 70 20 69 73 20 65 69 74 68 65 72 20 70 6F 72 74 20 41
20 6F 72 20 70 6F 01 DO 00 54 72 74 20 42 2C 20 61 6E 64 20 72 20 69 73 20 74 68 65 20
64 65 73 69 72 65 64 OA 62 61 75 64 20 72 61 74 65 2C 20 69 2E 65 2E 2C 20 35 30 2C 20
37 35 2C 20 31 31 30 2C 20 31 33 34 2E 35 2C 20 31 35 30 2C 20 33 30 30 2C 20 65 74 63
2E OD 53 45 54 42 41 55 44 2F 43 4D 44 2C 20 62 61 75 64 20 72 61 74 65 20 63 68 61 6E
67 65 72 20 66 6F 72 20 54 52 53 2D 38 30 20 61 6E 64 20 4D 41 58 2D 38 30 20 73 79 73
74 65 6D 73 OA 28 63 29 20 31 39 38 33 20 62 79 20 4A 65 66 66 72 65 79 20 52 20 42 72
65 6E 74 6F 6E OD 00
00 00 00 00 00 00 00 00 00 00 00 FF FF 02 02 94 52
*83

Make an ASCII file of the above WITHOUT SPACES. They are there for readability only. The
checksum (*83) should not be included if you are using the /BAS version of BINHEX. After
you have finished typing it in, run BINHEX. At the prompt, type '2' for hex-to-binary
conversion and give the file name you gave to the ASCII file. You can give the binary file
whatever name you wish. BINHEX will create a runnable file (provided you made no typing
errors). Later versions of BINHEX will give you a checksum to compare against the one
shown, and the compiled version will compare the checksums for you. If they disagree,
check for errors (do NOT miss any of those O's!).

This program is available in the DownLoad database of the LDOS/TRSDOS6 Special Interest
Group sponsored by MISOSYS, Inc., on CompuServe, as SETBD.HEX under ppn 73105,532. Any
questions regarding it may be directed to me there or by mail to:

Tandem-Flow Systems, Ltd.
P O Box 146
Woodstock, Illinois 60098
Attention: Jeff

The Programmer's Corner - 63 - The Programmer's Corner

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

Product Highlights: ADE

SCM exposed a rare problem when SYSGENning
an ADE floppy when the host drive was not
a hard drive. Let me summarize the
problem. Using TRSDOS 6.2, he created an
ADE floppy using a floppy disk as the host
disk. He then SYSGENed this configuration.
Upon reBOOTing, when he accessed the ADE
drive before accessing the host drive, the
drive head moved to the stop and just
stayed there making a terrible banging
noise. He suggested that the problem
related to the value in DCT+5 (normally
the current cylinder location). That is
indeed the root of the problem. I
confirmed this sequence of events;
however, on my system, the drive recovered
and eventually properly accessed the file
on the ADE floppy that I had attempted to
load into MSCRIPT. An investigation into
the cause revealed the following scenario.

Under TRSDOS 6.1 and 6.2, the BOOT process
concludes with a routine which scans all
logical drives' DCTs other than zero
starting from logical drive 7 and working
its way to logical drive one. If the drive
is not a hard drive (noted via DCT+3, bit-
3), it loads an X'FF' into DCT+5 which
sets the current cylinder out of range. It
then proceeds to issue an @RESTORE to the
disk driver for that drive unless the
RESTORE=OFF option is set using the SYSTEM
command. The @RESTORE function in the DOS
disk driver loads a zero into DCT+5 to
note that the drive is positioned at
cylinder O. The purpose of the X'FF' stuff
into DCT+5 is to "cure" the old bang-the
head-against-the-pin problem that occurred
under LOOS 5. Why then does the problem
occur here?

It goes a little deeper. The ADE driver is
smart to recognize that it only needs to
operate on type-2 disk requests (those
functions 8-15). Thus, for functions 0-7,
ADE passes the request through to the host
drive. However, when the BOOT loader
stuffs the X'FF', it stuffs it into the
DCT belonging to the ADE floppy. When ADE
receives the @RESTORE request, it locates
the DCT of the host disk and passes the
function request to the host. The DOS disk
driver then performs the @RESTORE
operation on the host drive; thus zeroing
DCT+5 on the host DCT - the ADE floppies

A Pot Pourri of MISOSYS Products - 64 -

DCT+5 remains at X'FF'.

When you attempt to open a file on the ADE
floppy, the first thing done by the
SYS2/SYS module which services the @OPEN
request is to issue an @CKDRV on the
requested drive. This is still the ADE
floppy. The @CKDRV routine was "smartened"
up in TRSDOS 6.x to first check if the
current cylinder is beyond the maximum
cylinder. It does this by comparing
(DCT+5) to (DCT+6). If it finds that the
current cylinder (X'FF' in this case) is
greater than the maximum cylinder (X'27'
for a 40-cylinder drive), guess what
@CKDRV does? It issues an @RESTORE! This
request goes to the ADE driver which sends
it along to the host disk driver and the
restore operation is performed on the host
drive! Thus, the X'FF' contained in DCT+5
of the ADE drive remains an X'FF'. The
next thing that @CKDRV does is make the
assumption that (DCT+5) is in range, picks
up the value, then issues an @SEEK to that
cylinder. Bang! The head is stepped
against the pin because the SEEK request
is to cylinder 255!

The ADE driver does not use DCT+5 for any
purpose - it starts out being zero, which
is an OK value. Unfortunately, the BOOT
initialization is the one thing in the
system which will change this value in an
ADE's DCT. The temporary solution is to
NOT SYSRES the ADE driver if you are going
to have a floppy disk as the host drive.
Using DEVICE or LOG will not help since
they both use @CKDRV. The ADE driver could
be modified in a number of ways. First, it
could trap the @RESTORE function and just
reset DCT+5 to zero. It could also force
DCT+5 to an arbitrary but "good" value.
For the time being, the problem is rarely
exper'ienced. The suggested cure is to not
SYSGEN ADE when the host drive is a
floppy.

Product Highlights: BSORT

From our Compuserve Special Interest Group
(PCS49), the following BSORT question was
raised by KZ: 11 A while back I bought some
programs from your firm and BSORT was one
of them. I am working on a program I found
in 80 MICRO for sorting Visicalc

A Pot Pourri of MISOSYS Products

J
J
J
J
J
J
J

I
_j

J
I

J

J
J
J
J

I
I

.....J

J
J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

spreadsheets and the line for sorting
reads as follows:

330 CMD "O",RC,D$(RS)

and all I am getting is a syntax error -
RC stands for the Row and Column number.
Since it appears that I did not have a
sort program for my Model 4P I went to the
BSORT program instead. I typed in the
following line:

330 system "BSORT RC,D$(RS)"

but all I get is "Command aborted".

Joe, our trusty support SIG SYSOP came up
with the easy solution. Firstly, the line
you indicate will not work, as the
starting element and number of elements
must be explicitly defined/typed integer
variables. Secondly, it will not work
because it is missing the TRSDOS "RUN"
verb. For example, instead of [330
system"BSORT RC,D$(RS)"] you must use:

330 system"RUN BSORT RC%,D$(RS%) 11

and RC%, RS% must be defined as integer
first thing in the program, and occur as
integer throughout. Alternately, if you
don't have a full function editor to do a
global search and replace, you might try
something like this:

330 tl% = rc:t2% = rs
system"RUN BSORT Tl%, D$(T2%)"

These points are explicitly covered in the
BSORT documentation. You have also copied
the file BSORT/CMD over to the working
TRSDOS 6.2 diskette that you are trying to
run this program on, and this disk is
present in drive zero when trying to
execute the sort, right? --jjkd--

Product Highlights: CONVCPM

Ian Kluft of Mt. Shasta CA writes, "For
two issues of NOTES now, you have claimed
that the Model 4 CP/M+ format is the same
as IBM PC CP/M-86. I have my doubts that
they are exactly alike. I know that
they're close. I used to work at a dealer
of an IBM compatible computer (the Fujitsu
Micro 16s). It~s CP/M-86 was claimed to be

A Pot Pourri of MISOSYS Products - 65 -

the same format as the PC's. I could read
those disks with my Model 4 under CP/M+,
but it couldn't read my CP/M+ disks. Also,
I had problems writing to the CP/M-86
disks with my Model 4. It kept overwriting
other data like it didn't know it was
there. Indeed, the Fujitsu may be the one
that's not exactly like IBM, but this is
something worth looking at in a bit more
detail, before Model 4 owners start losing
data."

Product Highlights: DD&T

Claude E. Hunter was having trouble when
both LS-diskDISK and PRO-DD&T's
disassembler module were both installed.
The problem with DD&T's DD/CMD when also
using LS-diskDISK's DD/CMD stems from both
/CMD programs using the same 2-letter
module name, "DD", for their "terminate
and stay resident" memory module. Use the
DDTD61/FIX patch to be applied to the PRO
DD&T's DD/CMD file to fix this conflict.
This patch will change it's module name to
"Dl"; thus, there will be no further
conflict - other than both /CMD files
having the same name.

Product Highlights: DESCRIBE

Here's another use for the extended file
descriptors provided with our DESCRIBE
package. It comes from Jeff Brenton
76703,1065 and recently appeared on our
Compuserve Special Interest Group (PCS49).
"Contact MISOSYS for a copy of Pro
DESCRIBE. it will let you add a 63-
character description to each file on a
disk, although you have to do it outside
of SuperScripsit, at the DOS level. I use
it to keep track of purchase orders on a
disk at work.

Product Highlights: DSM

Joel Weisbrod had a problem running the
Model I/III version of DSM from a Job
Control Language file. When I investigated
why DSM51 doesn't permit operation from
JCL, I found that it was documented
incorrectly. According to how the program
is written, it is not going to even look
for a command character (what the "S" was

A Pot Pourri of MISOSYS Products

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

purported to stand for). Thus, the "S" is
being interpreted as the output file
specification. This error propogated
itself to the third line which was then
expecting the "A". The easy solution is to
omit the "S" line from the JCL file. Thus,
the correct file syntax for operating
DSM51 from JCL is as follows:

DSM51 SORTED/MAP (JCL)
SORTED/IND
A
4
3

LD had a large mailing list of 2000-2500
names which was segmented into about five
files so he could sort each file with an
in-memory BASIC sort. LD was interested in
adapting DSM's disk sorting capability
into his application. Here are some tips
that may be useful for others in the same
boat.

Since the datafile has 2500 or so names,
LD had to break it up into smaller pieces
so he could deal with it in BASIC. All
well and good. However, that really
hinders the operation. LD had to break it
up strictly for the sorting which was RAM
based. Let me outline another technique.

The concept of using an integer array
which contains the sorted index of the
total data file needs to be understood.
What this means is that the program needs
to be revised to use a single data file
along with an index file. The index file
is random accessed with an LRL of 2. Each
index record is a packed integer. That
integer represents the actual record
position in the data file.

Assuming a single data file, DSM4 will
sort it according to the sort criteria and
generate the desired index file. Once the
index file is created, if, for instance,
you want to access the 50th sorted record,
you read the 50th record of the index file
then use that valu~ as the GET pointer to
read the data file. Now 2500 index entries
of 2-bytes each is only SK of memory. You
probably could then keep the index file in
memory for speedier access. The only
memory space allocated for data would be
for one record at a time. That's the
entire purpose of DSM4 - to allow you to

A Pot Pourri of MISOSYS Products - 66 -

sort a big file and produce an index of
the sorted order.

Product Highlights: FED II

Here's a tip that relates not just to FED,
but to a lot of other programs which use a
default file extension and you want to
access a file which has no extension. It's
just one more example of the type of
support provided on our Compuserve Special
Interest Group.

Alan H. Pesetsky 75675,1535 said, "I've
been taking a look at the new SCRIPSIT
PRO. They have a sample file in their
tutorial called TWAIN. When I tried to
look at its structure using FED I got a
"file not in directory message". Otherwise
I can read the file using TSK and it lists
using the DOS list command (though it pops
into reverse after the header). Any clues
as to why FED thinks it isn't there?"

(RE) If you are using FED-II, and the file
is named "TWAIN" with no file extension,
then tell FED the file is "TWAIN/". The
"I" is important. It says don't add the
default extension of "/CMD". I suspect if
my assumptions hold true, that FED is
telling you that "TWAIN/CMD" is not found!

On the other hand,
will try to access
"TWAIN/" second if
be opened. That's
list the file.

the LIST command of DOS
"TWAIN/TXT" first, then
the "/TXT" file cannot

why LIST was able to

Product Highlights: Little Brother

The following notice was added to the
TRSDOS 6.x version of Little Brother on
April 17, 1986. "For proper printing
operation using Little Brother under
TRSDOS 6.x, you need to install the FORMS
filter if your printer does not CARRIAGE
RETURN when it receives a LINEFEED. This
can be accomplished by the following two
TRSDOS 6 library commands:

SET *FF FORMS
FILTER *PR *FF

A Little
getting to

Brother
first

user
base

needed help in
with LB and in

A Pot Pourri of MISOSYS Products

i
.....J

J
J
J
J
J
J

I
J

J
.....J

J
J
J
J

i
I

_J

J
I

_..J

J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

developing a screen definition. What was
essentially needed was an outline of the
steps neccessary to create a usable data
base. What follows is such an outline."

There are approximately three processes
that need to be accomplished in order to
create a data management system using LB.
The first is to define the data file
environment. This task establishes the
different items (data fields) which will
appear in the data file. This part
corresponds to your illustration of name,
address, etc.

Once you have established the structure
for a data file, two more things need to
be accomplished. You have to provide a
means for printing the information and you
have to provide a means for entering
information into the data file. You
apparently understand the process of
defining the output printing formats
discussed on pages 19-58 of the LB manual.

The DEFINE SCREEN FORMAT section discusses
that task associated with telling LB how
you want to see the input screen for
entering data. You see, other database
programs which allow you no control over
the input screen leave you no facility for
customizing the input. With LB, you can
easily create the input screen. All you do
is follow the instructions on pages 7-18.
You move the cursor around on the screen
until it is positioned at the screen
location where you want to see the request
to enter a field then type in the
appropriate prompt and field specifier,
Using your example, if you just want to
enter each item on a separate line, then
assuming your example fields are numbered
in the order presented in your letter, the
following input screen would accomplish
this:

Name: "'l"'
Address: "'2"'
City: "'3"'
State: "'4"'
ZIP code: "'5"'
Phone: "'6"'

Of course, you could dress up the screen
with a heading such as, "Customer Address
File". You certainly could position the

·j; input fields according to your taste -

A Pot Pourri of MISOSYS Products 67 -

perhaps putting City, State, and ZIP on
one line.

A useful reason for giving you the
capability of defining your input screen
would be to isolate data entry to a subset
of the fields in your data file. You may
have a large number of fields which do not
get input but are calculated. Or maybe
some fields are entered rarely. You can
have different input screens to use at
different times each input screen
tailored to the data which you want to
enter. Having less fields on the input
screen gives it a less cluttered look.

I am confident that you will find LB's
methods easy to use. Don't forget that you
can always change an input screen's
presentation - even after you have begun
using it to enter data.

Another user wanted to duplicate a Little
Brother data base structure. Turns out the
job is extremely easy IF you do a little
preplanning. If you have any reason to
suspect that you may want to duplicate
your data base, save a copy of the DEF,
LB, VDn, and PRn files BEFORE YOU ADD ANY
RECORDS. Then all you need do to create
subsequent data bases using the same data
definition is to use backups of the
"saved" set. Using a different set of
"filenames" helps. If you have not
preserved a copy of these original files,
you will have to recreate the data file
definition; however, the VDn and PRn files
may be reused. The definition can be
easily recreated by using a printout of
the field definitions obtainable from the
"define data field format" function using
the existing data base.

Now speaking of existing data bases, I
recently went through a revision of the
customer file database here at MISOSYS. A
little background is in order. Prior to
the acquisition of LSI's retail operation,
we used PowerMAIL to hold our base of
registered customers (we only kept those
interested enough in returning a
registration card). Logical Systems used
PROFILE in the past and then Little
Brother after they completed that package.
We, of course, acquired their data base.
Now LSI had about 50,000 records in that
LB data base. About 12,000 were identified

A Pot Pourri of MISOSYS Products

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

as recent purchasors or registered
customers. The remaining -36,000
represented inquiries, subscription lists
of defunct magazines, and other entries we
didn't feel warranted our direct mailings.
Thus we wanted to trim their list down to
12,000. We also wanted to drop some fields
and add others (specifically fields
relating to THE MISOSYS QUARTERLY
subscriptions). That meant a significant
use of the Little Brother Maintenance
Utility. We also wanted to merge our data
base into the revised LSI base. That meant
a bulk loading using the AUTO option of
Little Brother.

The LSI base runs on an old Leading Edge
PC e/w a 10 Meg hard drive. Since the
50,000 record base used up 8.5 megs of the
hard drive, we needed a larger hard disk
to provide room to store both the old base
and the new one. To do this, we acquired a
20Meg drive package with controller and
cables for $399 good deal. Turns out
that it would not work in the Leading Edge
machine but worked perfectly in the IBM PC
we had. So much for compatibility of the
older LE. So, using the PC for the job, we
backed up the 50,000 record base ontoj'~
about 25 floppies and restored the base to
the IBM's 20Meg drive. We then defined a

new data base structure for our new base
using the LB Maintenance Utility (LBMU).
We extracted the 12,000 "active" records
and populated the new base with them - all
this is part of the LBMU. We then backed
up the new data base onto floppies and
restored them to the LE machine after
purging all of the old data base files.

The next job was to get our PowerMAIL data
over to the new data base. Using the
PMAIL's function to extract records into
an adder file, we generated a 4,000 record
adder file. Now the AUTO facility of LB
works something like LDOS's redirection
capability - it allows you to obtain the
input, which normally would come from the
keyboard, from a disk file. All I had to
do now was create a disk file that would
look like the keystrokes I would type to
input 4,000 records. Easy stuff!

As part of their technical support
literature, LSI had available an example
of a conversion utility written in BASIC
to take a fixed record length file and
convert it to a LB AUTO-input file. Since
it was not published in the last LSI
JOURNAL, I think it appropriate to publish
it her,:)

V
10 OPEN"R",l,"OLDDATA",LRL: 'LRL must match existing file
20 FIELD 1, •••••• : 'FIELD the old file to match its data structure
30 OPEN"O", 2, "AUTO/ JOB": ' OPEN the LB auto file
40 PRINT #2, "2"; CHR$ (13); "A";
50 FOR L=l TO LOF(l): 'DO all records in old data file
55 GET 1,1
60 PRINT#2, field variable l;CHR$(13);
70 PRINT#2, field variable 2;CHR$(13);
80 ETC ••• (DO ALL FIELDS IN OLD FILE)
90 PRINT #2,CHR$(27);
199 NEXT L
110 PRINT#2,CHR$(26);
120 CLOSE:END v

The semicolons after the "PRINT 4F2"
statements are VERY important do not
forget them! If there are blank records at
the end of the old data file, line 50
should be changed to read: FOR L = 1 TO
real number of records.

Now one
is that
base has
includes

more important thing to remember
if your new Little Brother data
additional fields or it no longer
some of the fields which were in --

A Pot Pourri of MISOSYS Products - 68 -

the old one, then take that into
consideration. A carriage return
(CHR$(13);) should be PRINT#'d in the
proper position for each new field. And
don't PRINT# any field from the old data
file which is not used in the new file.

As a more concrete example, here's a copy
of the BASIC program I used to convert my
PowerMAIL file to the auto input file of
Little Brother. This program was written

A Pot Pourri of MISOSYS Products

J
J
J
J
J
J
J
J
J
J
J

i
J

J
J
J
J
J
J
J

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

for use with our EnhComp BASIC compiler on the Model 4.

'MDATA/BAS - 06/09/86
ALLOCATE 2: OPEN "r",l,"pmail/add",128
FIELD 1, 15 AS F0$, 10 AS Fl$, 20 AS F2$, 20 AS F3$, 10 AS F4$, 15 AS F5$, 8 AS F6$,
10 AS F7$, 5 AS F8$, 12 AS F9$, 1 AS FLG1$, 1 AS FLG2$, 1 AS FLG3$
OPEN "o",2,"mdata/dat:l"
PRINT1F2, 2: PRINT1F2, "A";
FOR I= 3 TO LOF(l): GET l,I: 'Skip the header sector in PMAIL/ADD
IF ASC(LEFT$(F0$,l)) = 255:' Do not bother with deleted records

NEXT I
ENDIF
PRINT#2, STRIP$(F2$):'Company name field
PRINT#2, STRIP$(F0$): 'Last name field
PRINT#2, STRIP$(Fl$):'First name field
PRINT#2, STRIP$(F3$): 'Address 1 field
PRINT#2, STRIP$(F4$): 'ADDRESS 2
PRINT#2, STRIP$(F5$): 'CITY - FIELD 6
IF ASC(FLG3$) AND 32:' if foreign customer

PRINT1F2, 1111
: ' do not print contents of STATE field

ELSE
PRINT#2,!STRIP$(F6$)

ENDIF
PRINT#2,!STRIP$(F7$): 'ZIP code field
IF ASC(FLG3$) AND 32: if foreign customer

PRINT#2,lSTRIP$(F6$): 'print STATE field now (Country)
ELSE

PRINT1F2, 1111
: 'else country field blank for US

ENDIF
PRINT1F2, "": 'FIELD 10 - MAIL CODE
IF F8$ =" ":'datal field stored last purchase date

PRINT#2,""
ELSE

PRINT1.b2, LEFT$ (F8$, 2)+"/"+MID$ (F8$, 3, 2)
ENDIF
PRINT1.b2, "86/06":' ORIGIN DATE
PRINT#2,CHR$(13);CHR$(13);CHR$(13);:' PRINT 3 <ENTER>S
IF ASC(FLG1$) AND 128: 'Keep record of MC purchase

O$="c"
ELSE

0$='"'
ENDIF
PRINT1F2 , 0 $
PRINT#2,CHR$(27);:' SAVE THE RECORD
NEXT I
PRINT#2,CHR$(26);:CLOSE:END
FUNCTION STRIP$(S$):' my function to strip trailing spaces
IF LEFT$(S$,l) = " "·' just used to make the output file smaller

RETURN '"'
ENDIF
LOOP%=LEN(S$):INC LOOP%
REPEAT

DEC LOOP%
UNTIL MID$(S$,LOOP%,l) <> II II

RETURN LEFT$(S$,LOOP%)

There you go. It's as simple as that. Now

A Pot Pourri of MISOSYS Products - 69 -

there is no excuse for not bringing your

A Pot Pourri of MISOSYS Products

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

old data files up to the flexibility of
Little Brother data management. Oh,· by the
way. In order to get this processed file
over to the PC from the MAX-80 where the
old data was stored, I direct connected
the MAX to the PC with a null modem and
XMODEM'd the MDATA/DAT file. Now the file
was about 400K so it took a while at 1200
baud; thet's why I added that STRIP
function.

Product Highlights: PaDS

Here's some feedback which may help you in
your use of PaDS. The PDS(APPEND) module
of PRO-PaDS does not restrict programs
which load at X'2600'. Even though the
PaDS front end loader loads and executes
there, it's not the FEL which loads the
member, the system does. The FEL only
extracts the name of the member requested
from the command line and reads the member
directory for a match. If found, it
obtains the positioning information for
the member and interfaces back to the
system. Thus, the member which is loaded
by the system can load into X'2600'.

If you have discovered certain "programs"
which are forced to be data members by
PDS(APPEND), this is caused not for
loading at X'2600' but for other reasons.
The only way a file can be considered to
be a program member is if it's file
adheres to the following three points: (1)
the first file byte must be either OSH or
OlH; (2) the file extension must be
"/CMD"; and (3) the fourth byte from the
end of the file must be 02H. Invariably,
when a "program" is forced to data, its
the third condition which is violated. It
will mean that the "program" has an end
of-file pointer in the directory which is
incorrect. If such is the case, the
directory should be corrected then
PDS(APPEND) will consider it a program. It
can be corrected either manually with a
file editor (such as FED/CMD or FED/APP),
or by loading the offending file into PRO
CESS (CMDFILE for Model I/III users) and
rewriting it.

Donald Gloistein had a problem with the
PPADSD/FIX as listed in NOTES, Issue IV. I
had previously verified that the patch

A Pot Pourri of MISOSYS Products - 70 -

worked as advertised. Since
having a problem with it,
double check everything.

he was still
I wanted to

It turns out that when I tested the
results of applying the patch, I used the
fix file that was issued on the DISK NOTES
4 diskette. I again used this fix with a
copy of the release PRO-PaDS file and it
again worked. After comparing the DISK
NOTES 4 fix with that printed in NOTES, I
recognized the problem. I don't for the
life of me know how the NOTES listing
could have been wrong.

Take another look at the listing on page
4-63. The second patch line starts at
X'2D75' and has 16 bytes of patch.
However, the next patch line starts at
X'2D86'!!! This is certainly incorrect. It
should be X'2D7S'. That should clear up
the problem he was having. To confirm the
patch, I am listing it again in this
issue's PATCH section.

Here's a caution for PaDS users. The
caution deals with recovery from a disk
full condition during a PDS(APPEND)
operation. If PaDS can be absolutely sure
that the error was a valid disk full, then
an attempt could have been made to correct
the EOF of the PaDS file during a
PDS(APPEND) operation. When I was
designing that module, my feeling was that
the disk full error out of all the
possible errors that could arise, should
not be treated as a special case. To do so
could jeopardize the integrity of the file
without absolute certainty of the extent
of the FCB corruption.

True, it is a simple matter for one to
check a PaDS ISAM directory and infer the
location of the EOF. A fixup could then be
done to the system directory. I would
rather have that a separate facility for
the skilled user. For my personal taste,
since the disk full probably didn't
corrupt any other portion of the PaDS file
(if it did, you see, then changing the EOF
would not accomplish what would have been
intended), it is also an easy matter to
PDS(COPY) the valid members over to
another file. That is the recommended
solution at this time.

A Pot Pourri of MISOSYS Products

J
J
J
J
J
J

I
J

I
_J

J
J
J
i

_j

J
J
J
J
J

J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

A. J. Hagers of THE NETHERLANDS supplied
me with a cute little program ·to invoke a
DIRectory command for selected date
ranges. The program is designed to be
invoked from a PaDS. The variation of the
range selection is selected by a different
entry point. Therefore, the utility is
appended to a PaDS via the MAP option and
has a number of entry points identified on
the map data line.

As supplied by AJ, the program was Model I
specific. I added code to support both the
Model I and Model III. I also added
conditional code for use with a
conditional assembler such as EDAS/PRO
CREATE or MRAS to assemble a Model 4
version. I took advantage of the "Pl"
parameter in EDAS/MRAS so as to assemble a
Model 4 version directly by a command such
as:

MAS DAYS +O=DAY
MR.AS DAYS +O=DAYS -GC

A model I/III version can be assembled
with a command line such as:

MAS DAYS +O=DAYS (Pl)
MR.AS DAYS +O=DAYS -GC (Pl)

In order to be able to append the program
to a PaDS file, you would need a MAP file
entry such as this:

DAYS,TODAY,5200,DAY3,520A,WEEK,520D,FORT,52
10,MONTH,5213,QUARTER,5216

Now since the Model I/III MAP file line is
limited to 63 characters in length, you
Model I/III folks will have to trim back
some of the member names in the above MAP
line to avoid exceeding that 63-character
limit. Assuming you created a separate
PaDS file of 6 members named DDIR, you
could request today's directory with:

DDIR(TODAY) :2

A printed directory
the last three days
a command such as:

of all /CMD files of
would be invoked with

DDIR(DAY3) /CMD (PRINT)
Any parameters you enter on the "DDIR"
command line will be passed to the normal
DIR command generated by the DAYS program.
Here's the program in its final form
assembled for the Model 4.

00001
00002
00003
00004
00005

DAYS routine for usage in a PDS library

4044
421A
0018
4405
4299
0012
4470
3033

5200
5200
5202
5205
5209
520A

A.J. Hagers programmed, Rotterdam 4th January 1986
usage could be DDIR (week) :0 (i)

00006
00007
00008
00009
00010

(today)
(day3)
(week)
(fort)
(month)
(quarter)

00011
00012 DATE$! EQU
00013 DATE$3 EQU
00014 @CMNDI EQU
00015 @CMNDil EQU
00016 @CMNDI3 EQU
00017 @DATE EQU
00018 @DATE! EQU
00019 @DATE3 EQU
00020
00021

4044H
421AH
24
4405H
4299H
18
4470H
3033H

5200H

directory for today
directory of last 3 days
idem week
idem fortnight
idem month
idem quarter

0600 00022 TODAY
11220D 00023
ED530053 00024
11 00025

ORG
LD
LD
LD
DB
LD

B,O
DE,OD22H
(DPOS+8) ,DE
llH

;Cover up the 11
-

11

;Ignore next LD B,n
set counter 0603 00026 DAY3 B,3

A Pot Pourri of MISOSYS Products - 71 - A Pot Pourri of MISOSYS Products

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

520C 11 00027
00028

520D 0607
520F 11

00029 WEEK
00030

5210 060E
5212 11

00031 ;
00032 FORT
00033
00034;
00035 MONTH
00036
00037;
00038 QUART
00039 ;
00040 DAYS
00041

5213 061C
5215 11

5216 065B

5218 ES
5219 cs

004F
521A
5210
521F
5220
5221
5224

5227
522A
5220
522F
5230
5234
5237
5239
523B
5230
5240
5241
5242
5243
5245
5248
524A
524D
5250
5251

21F852
3El2
EF
EB
223252
226C52

00042
00043 CMDLEN
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056 CMDLEN
00057
00058
00059
00060
00061
00062
00063

110353 00064 IS3
010300 00065
EDBO 00066
Cl 00067
DD211A42 00068 DATEA
DD7EOO 00069
E603 00070
2005 00071
3ElD 00072
320753 00073
AF 00074 NOLEAP
57 00075
B8 00076
2810 00077
D03501 00078 LOOP
2016 00079
210553 00080
DD5E02 00081
10 00082
2005 00083

DB

LO
DB

LD
DB

LO
DB

LD

PUSH
PUSH
IF
EQU
LD
CP
LD
JR
LO
LD
LD
LD
LD
LD
LD
ELSE
EQU
LD
LO
RST
EX
LO
LD
ENDIF
LO
LO
LDIR
POP
LD
LD
AND
JR
LD
LO
XOR
LD
CP
JR
DEC
JR
LD
LD
DEC
JR

A Pot Pourri of MISOSYS Products

llH

B,7
llH

B,2*7
llH

B,4*7
llH

B, 13*7

HL
BC
@@1
63
A,(125H)
'I'
HL,DATE$3
Z,IS3
HL,@CMNDil
(CMNDI+l) ,HL
HL,@DATEl
(DATE) ,HL
HL, DATE$!
(DATEA+2) ,HL
(DATEB+l) ,HL

79
HL,DPOS
A,@DATE
40
DE,HL
(DATEA+2) ,HL
(DATEB+l) ,HL

DE,TEMP_H
BC,3

BC
IX,DATE$3
A,(IX+O)
3
NZ,NOLEAP
A,29
(MNTAB+l) ,A
A
D,A
B
Z,NO CNT
(IX+l)
NZ,NEXT
HL,MNTAB-1
E,(IX+2)
E
NZ,NOYEAR

- 72 -

;Ignore next LO B,n

; idem
;Ignore next LD B,n

; idem
;Ignore next LO B,n

;Ignore next LD B,n

; save hl
;B needs to be saved
;Check on LDOS 5.x

;Model check
; 'I' = Model III

;Correct @CMNDI

;Correct @DATE

;Correct DATE$

;Find memory location
of date storage

;DATE$=> HL

;Save current system date

; set on system date$
;If year is leap, then

set Feb in table to 29

zero A
and D
B=O for a today
which has no countdown
day: =day-1
?=O
set HL on base of month
fetch current month
mn:=mn-1
not a new-year

A Pot Pourri of MISOSYS Products

J
J
J
J
i

_J

I _;

J
J
J
J
J

I
_J

J
J

I
.....J

J
I

J

J
J

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i ·

5253 DD3500
5256 lEOC
5258 19
5259 7E
525A DD7701
525D DD7302
5260 10E3
5262 21F852

5265 3El2
5267 EF

5268 210353
526B 111A42
526E 010300
5271 EDBO
5273 El
5274 11A552
5277 7E
5278 FEOD
527A 2815
527C FE29
527E 2811
5280 FE28
5282 2804
5284 EDAO
5286 18EF
5288 EDAO
528A 3E2C
528C 32F452
528F 18E6
5291 21F452
5294 OlOFOO
5297 EDBO
5299 21Al52

529C 3El8
529E C32800

52Al 44
49 52 20

00084 DEC
00085 LD
00086 NOYEAR ADD
00087
00088

LD
LD

00089 LD
00090 NEXT DJNZ
00091 NO CNT LD
00092 IF
00093 DATE CALL
00094
00095
00096
00097
00098

ELSE
LD
RST
ENDIF
LD

00099 DATEB
00100

LD
LD
LDIR
POP
LD

00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112

SCAN MV LD
CP
JR
CP
JR
CP
JR
LDI
JR

00113 OPEN
00114

LDI
LD
LD
JR

00115
00116
00117 ENDFND LD
00118 LD
00119 LDIR
00120 LD
00121 IF
00122 CMNDI JP
00123 ELSE
00124
00125
00126

LD
JP
ENDIF

00127 CMDTXT DB

52A5 00128 MOVE INDS
52F4 28 00129 DTEXT DB

64 3D 22
52F8 6D 00130 DPOS DB

OOOF
5303
5306

5210

6D 2F 64 64 2F 79 79 2D
22 OD

lF
lC lF
lF lE

00131 DTLEN
00132 TEMP H
00133 MNTAB

lE lF lE lF lF
lF

00134

lE

EQU
DS
DB

END

A Pot Pourri of MISOSYS Products

(IX+O)
E,12
HL,DE
A, (HL)
(IX+l) ,A
(IX+2) ,E
LOOP
HL,DPOS
@@l
@DATE3

A,@DATE
40

HL,TEMP H
DE,DATE$3
BC,3

HL
DE,MOVE IN
A, (HL) -
ODH
Z,ENDFND
I) I

Z,ENDFND
I (I

Z,OPEN

SCAN MV

A, I' I
(DTEXT) ,A
SCAN MV
HL,DTEXT
BC, DTLEN

HL,CMDTXT
@@l
@CMNDI3

A,@CMNDI
40

'DIR I

CMDLEN
I (d=" I

'mm/dd/yy-"',13

$-DTEXT

year:=year-1
new month
HL:= position in table
fetch number of days
and place in date$

idem
loop for number days
HL:= string space

use system routine

restore date$

and HL
start pos in cmd$
byte from cmd buffer
?= CR
end of cmd found
?=)
considered an end o 1
?= (
para's in cmd
copy buffer into cmd$
loop around
copy buf to cmd$
place komma in cmd$
instead of (
get into loop again
date para to be moved
place, BC:= length
action word
HL on completed command

and execute it

first part of cmd$

worst case needed
part of date parameter

filled in by dos @date

3 ; temp hold
31,28,31,30,31,30,31,31,30,31,30,31

FORT

- 73 - A Pot Pourri of MISOSYS Products

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

LIBRARY files for EDAS by Robert M Connors

The following procedure creates a series
of PaDS library files which can be
*SEARCHed from EDAS under LOOS 5.1.x using
a multi-drive system. Instead of
maintaining two separate files,
EQUATEl/EQU and EQUATE3/EQU, this
procedure will produce one /LIB file which
contains addresses that are identical on
the Model I and III, and two other /LIB
files which contain EQUates for unique
Model I/III addresses.

First, using EDAS, create a list of
equates (e.g., @DSPLY EQU 4467H) for all
addresses that are the same on the Model I
and III (use the alphabetic memory map in

the LDOS manual). The EQUATEl/EQU or
EQUATE3/EQU file on your master LDOS
diskette can be used to do this. Save this
list as a file entitled 'LDOSEQU/ASM', or
something similar. Next, create a separate
file for the Model I and Model III which
will contain unique addresses for each.
They could be entitled something like
LDOSl/ASM and LDOS3/ASM. These files may
contain special symbols('@', '$') as part
of the label names, just as they appear in
the Technical Information section of the
LDOS manual. Then format a new data
diskette and put it in drive 1. Load
LBASIC and run the following program
(Note: the spaces that are included-must
remain for the Model 4/4P but may be
removed for Model I/III LBASIC):

100 CLS:CLEAR 5000:0N ERROR GOTO 360:'Delete '5000' on Model 4/4P
120 OPEN "I",l,"LDOSl/ASM:O"
140 IF LOC(l)=LOF(l) THEN CLOSE:END ELSE LINE INPUT#l,REC$
160 FT=INSTR(REC$,CHR$(9))-l:ST=FT+2
180 TT=INSTR(REC$,CHR$(9)):TT=LEN(REC$)-Tl'
200 F$=LEFT$ (REC$, INSTR(REC$, CHR$ (9))-1)+"ASM: 1"
220 IF LEFT$(F$, l)="@" THEN MID$(F$, 1, l)="A"
240 D=INSTR(F$,"$"):IF D<>O THEN MID$(F$,D,l)="Z"
260 OPEN "0",2,F$
280 PRINT @0,CHR$(30);"Writing file ";F$;
300 PRINT @64,"Record = ";CHR$(30);LEFT$(REC$,FT);

"";MID$(REC$,ST,3);" ";RIGHT$(REC$,TT);
320 PRINT 2,REC$
340 CLOSE 2:GOTO 140
360 IF ERR()122 AND ERR(>134 THEN CLOSE:END
380 CLOSE:KILL F$
400 CLS:PRINT @0,"Disk full!! '';F$; " is the next file to create"
420 PRINT "Re-run the program when ready."
440 END

The file name in line 120 should match the
name given the EQUate file created as
described above. The program will open the
file, and extract each line, creating a
file for it using the EQUate label as the
filespec. If the label contains an'@' or
'$', they are changed to 'A' and 'Z'
respectively in the filespec (not the
label). Both the filespec, and EQUate line
will be displayed on the video. The new
file is closed, the next EQUate line read
from the input file, and the process
repeats itself until the end of file is
reached. If your diskette in drive #1
becomes full before the program has
completed processing (only people with 35
track drives will have that problem),
error trapping is provided to allow

A Pot Pourri of MISOSYS Products - 74 -

insertion of a newly formatted data
diskette in drive #1 so that processing
can be completed. Of course, you'll have
to delete all the previously processed
lines from the /MAP file before continuing
-- that's why the program tells you which
one to start with again.

Once all the files are created, you may
KILL the /ASM file which you just
processed. Then, using PARMDIR or FM,
create a PaDS /MAP file of all the files
created by the BASIC program. You'll have
to create two /MAP files if you used two
diskettes. If PARMDIR or FM are not
available, EDAS, a word processor, or even
the LDOS 'BUILD' comand could be used to
create the /MAP file. Regardless, the /MAP

A Pot Pourri of MISOSYS Products

J
J
J
J
J
J
J

i
_j

J
J
J
J
J
J

I
-.I

J
J
J
J

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

file should not contain line numbers.
Create a PaDS /LIB file using the
PaDS(BUILD) function being sure to
allocate enough members to cover the
entries in your /MAP file(s). Next, using
the PaDS(APPEND) function with. the '(MAP)'
parameter, append the files to your /LIB
file.

Finally using FED, look at the /LIB file's
PaDS directory entries and change all the
entries starting with 'A' to '@' (note:
LOOS has no labels starting with 'A'), and
all entries ending with 'Z' back to'$'
(note: LOOS has no labels ending with
'Z'). Use the arrow keys to move from
record to record. Be sure you save each
page (FED's 'S' command) before moving to
the next page or the changes will not take
effect. If you don't have FED, get a hex
dump of the file's PaDS directory on your
printer, and use the LOOS 'PATCH' utility
to make the changes directly to the file.
Note: PaDS directory entries containing
special symbols such as '@' and'$' cannot
be copied or listed using standard PaDS
functions. For a way around that, see
'NOTES FROM MISOSYS' Number IV, page 61-
62.

Repeat the above procedure for each /LIB
file you have created. When you are done,
you no longer need to *GET the equate
files and clutter your assembly and cross
reference listings with a lot of unused
symbolic labels. Nor do you need to
include your own equate labels for LOOS
entry points in your program. Instead,
just *SEARCH LOOSEQU/LIB for each program
(LOOS 5.1.x OOS's only), and conditionally
*SEARCH LDOSl/LIB or LDOS3/LIB depending
on which machine you are writing code for.
You will then get an EQUate listing for
only those labels referenced in the
program, thereby saving disk space, paper,
and assembly time. Also, the cross
reference listing and/or symbol tabels
will be correspondingly small.

The above BASIC program could also be used
to create an LDOS4/LIB file which would
contain the equates for all the OOS6 SVC
functions (e.g., @DSPLY EQU OAH), which I
have done. I also have a file for the MAX-
80 for those addresses shown in the MAX-80
Programmer's Manual not used by LOOS. This
means that I can, by setting the 'Pn'

A Pot Pourri of MISOSYS Products - 75 -

values when invoking EDAS, or by setting
the '@@l' thru the '@@4' labels in my
source listing, assemble a file for any of
these computers with a minimal amount of
re-write of routines. It is a great time
saver.

Product Highlights: PARMDIR

Before NOTES Issue III was printed, RMC
wanted to know why PARMDIR didn't suppress
the "notes" generation when invoked using
the MAP parameter since the PaDS MAP file
doesn't suport a "dot" comment line. He
was the first person commenting about the
'comments' of PARMDIR when using the MAP
parm. Because that was a most-reasonable
request, I worked up a patch that was to
have appeared in the next issue of NOTES.
I never gave it an official patch name and
I don't know why the patch never made it
into NOTES, Issue III. The patch is
designated PAR...'1DIRx/FIX and pertains to
the Model I/III version. It's printed in
the PATCH section of this issue.

Product Highlights: PRO-ESP

Frank A. Yacucci wanted to make some
changes to the way our ALTDISK and PRO
SAID programs dealt with command line
parameters. For ALTDISK, he wanted the
DRIVE to default to something other than 7
and the HALF option to default ON instead
of OFF. First, the changes to ALTDISK
relate strictly to parameter behavior. So
lets take a look at that. You should have
a copy of either THE PROGRAMMER'S GUIDE TO
TRSOOS 6 or Tandy's Technical Reference
manual. Knowing the concept of the
parameter scanner SVC, you would use FED
to look at the ALTDISK file. The parameter
table is found at address X'3525'; the
table is an LDOS 5 type table. You see the
DRIVE parameter entry. The parameter
VECTOR has a value of X'3000'; thus, use
the FIND command of FED to locate the
address. At X'3000', you will find the two
bytes, 07 00. You should know that
parameter values are two bytes stored low
high. The '07' is the default of DRIVE=7.
Thus a patch of the order,
(D00,54=04:F00,54=07), changes the 7 to
your desired default (I illustrated '04'

A Pot Pourri of MISOSYS Products

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

for DRIVE=4). The "D00,54" is determined
by FED to be the position for the patch.

Back to the parameter table and you will
find that the HALF parameter VECTOR points
to X'3002'. At that address you will find
the value, 00 00. You should learn from
THE GUIDE that OFF is represented by
X'OOOO' while ON is represented by
X'FFFF'. Thus, the patch for HALF to
default to ON is:

(D00,56=FFFF:F00/56=0000).

Product Highlights: ZCAT

Through the medium of our Compuserve
Special Interest Group (PCS49), Ron
Ungashick 70360,100 reported both a
problem and solution. He advised," Roy, I
have found what I believe is a minor
problem with PRO-ZCAT. When you have more
than 68 disks cataloged and you "<L>ist
disks on file" the first screen of 68
disks are displayed correctly. When you
press <ENTER> to display the second
screen, the first line of disks is not
cleared. The new disks are displayed in
the lines below it. The code to clear the
disk display is as follows.

3B70 LD HL,0500H
3B73 LD B,03H
3B75 LD A,OFH
3B77 RST 28H
3B78 LD C,lFH
3B7A LD A,02H
3B7C RST 28H

I have a patch to correct the problem as
follows.

• Patch PRO-ZCAT Disk Display
X'3B72'=04

If you have time, perhaps you could verify
this and include it in THE MISOSYS
QUARTERLY. Thanks, -Ron". Well Ron was
right. For those of you who want a direct
pat ch , it ' s :

A Pot Pourri of MISOSYS Products - 76 -

PATCH ZCAT (DOB,46=04:FOB,46=05)

Product Highlights: ZSHELL

Here's some tips on using our ZSHELL
facility. First, if you want to add
redirection to the JCL file resulting from
an application of the WC utility, all you
need to do is prefix the WC command line
with a double quote mark and add the
redirection specification where you want
it to appear in the WC parameter as in:

"WC LI ST * / TXT : 1 »TEMP/ TXT: 5

It pays to read the documentation
thoroughly. That happens to be a-good use
for the double quote which inhibits ZSHELL
from scanning the current command line for
redirection specifications.

Second, there is a little problem in
redirecting SCRIPSIT's printer output.
Here is the problem. Model 4 SCRIPSIT does
indeed output a zero when first performing
the PRINT operation; however, it is not
output via the @PRT supervisor call but
rather through @CTL referencing the *PR
device control block. If you ROUTE *PR
filespec at the system level, this
redirects the device handling to the DOS's
character I/O routines. The disk "output"
handler traps @CTL calls and inhibits them
from being put to the disk file. That's
why you won't see a 00 byte in the ROUTEd
disk file. Unfortunately, ZSHELL makes no
distinction between a @CTL 0 and a @PUT 0.
Thus, when you invoke- SCRIPS IT with
ZSHELL's redirection, the hex 0 put out by
SCRIPSIT at the start of printing winds up
in the disk file.

This sounds like a useful modification to
ZSHELL - that of inhibiting @CTL calls -
but only if the output device is a disk
file! Some day I'll have to look at that
modification. By the way, the reason that
SCRIPSIT outputs a @CTL 0 is for the
purpose of testing the availability of the
printer. Until we decide on a permanent
solution to this problem, be on guard.

A Pot Pourri of MISOSYS Products

J
J
J

I
I

_J

J
I

_J

I
._J

I
....J

I
_J

J
i

_J

J
J
J
J
J

J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

PRO-WAM: A new name for PRO-NTO

In early 1986, MISOSYS received a letter
from James J. Foster, attorney for
Chemical Bank. It advised us that we were
infringing on Chemical Bank's "Pronto"
trademark. The normal "cease and desist"
language was conveyed. Our attorney
investigated the purported claims and
advised us as to the position we should
take. We then addressed the following to
Chemical Bank's attorey.

"After reviewing the documents supplied by
you and the documents associated with the
announcement of our PRO-NTO product in
December of 1984, our corporate attorney
has advised us that we "should change the
designation for our software." Counsel
further added that, 'Some of the ads
[MISOSYS] provided clearly would be
confusing when compared to the use of
those words by the Chemical Bank.' Thus, I
have been advised by counsel to write you
indicating that we will take the necessary
steps to cease using the PRO-NTO (or
PRONTO) designation for our software.

In light of these findings, I have
instructed our attorney to perform a
trademark search for a new name that has
been selected for our product. As soon as
we can determine that the selected name
does not infringe on any other company, we
will proceed to alter our advertising and
other product information concerning our
windowing and application manager product.

Since advertising leadtimes are in excess
of two months, and a trademark search may
take some time to accomplish, I have
instructed our advertising department to
incorporate the following notation in our
PRO-NTO ad as soon as possible. "Coming
soon: a new name for PRO-NTO - to avoid
confusion with Chemical Bank's Pronto
electronic banking system".

We apologize for any inconvenience our use
of Chemical's trademark may have caused.
However, at the time we selected the PRO
NTO name for our product in 1984,
Chemical's electronic banking system was
certainly not an item known by us to be a
computer software program."

We then directed our trademark attorney to

Product in Focus: PRO-NTO, PRO-WAM 77 -

investigate other names which we could use
for our "PRO-NTO" product. We selected
"PRO-TON", "WAM! 11

, "PRO-DIGY", and "PRO
MISE". It turns out that all of those were
no good. There is a Proton corporation
using that term, "WAM" and slight
variations are trademarked as well as a
number of pending applications, "PROMIS"
is trademarked for computer programs as
well as a pending application for
"PROMISE", "PRODIGY" is already
trademarked for microcomputer systems. We
wound up spending about $500 to exhaust
all of our reasonable choices. Thus, we
settled in on "PRO-WAM". The "WAM" part
comes from "Window and Application
Manager". The PRO indicates a TRSDOS 6
product. You will soon see this term used
in our advertising. Don't worry, it's
still the same dependable PRO-NTO product
(not to be confused with electronic
banking).

Gregory Cleland writes of PRO-NTO, "I've
had my new copy of PRO-NTO for a couple of
days now and I've got to say that this is
the best price/performance package that
I've ever bought. As usual for MISOSYS
products, the documentation was excellent
and the software stunning. John Harrell's
review in 80 Micro is right on target.
PRO-NTO is a five star product.

I have only two questions, both regarding
DIALER4P/FIX. Should the'@' macro really
be "C-k-1<-M", or do you mean "CC*FM"?
Secondly, is there a cleaner way to force
the 4P modem to hangup after connecting -
for voice communications other than
LIBEXEC SETCOM (DTR=N)? This method
requires one to reissue the SETCOM (DTR=Y)
command prior to dialing out again. 11

Well the answer to both of Greg's
questions are easy. We recommended "C**M"
as the "@" macro string to clear the 4P
modem and bring it to known conditions.
Since the DIALER's output doesn't examine
the response back from the modem, the
second asterisk is used to ensure that at
least one of them is seen by the modem.
The "M" puts the modem into automatic
mode. Of course, if you want to FAST DIAL,
add the "F". The answer to question two
can be found further down in a letter from
Jack Savitz.

Product in Focus: PRO-NTO, PRO-WAM

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

William E Connors writes concerning a bug
he experienced with MED/APP - one-of the
applications in the Mister ED application
pac, "I received your letter with the fix
for my MED/APP problem. Thank you for your
very quick response. Glitches do plague us
all from time to time, and are often
caused by our efforts at enhancement. I
think my Grandmother recognized that since
I can remember her saying, 'The enemy of
best is better.'

I performed the indicated operations
contained in your letter and I'm happy to
say that MED' s "A" & "H" commands now
perform flawlessly. I am delighted! The
function I had in mind for MR ED's MED/APP
is the modification of LESCRIPT's KSM
file, while resident in RAM. It works as
expected, and makes LESCRIPT even better
suited to my needs."

RJE asked whether PRO-NTO will run under
MAXDOS 6. Be advised that Karl Hessinger,
author of PRO-NTO, used a MAX-8O under
MAXDOS 6 for development. Thus, PRO-NTO
will certainly run under MAXDOS.

Here's an easy way to help isolate random
problems while using PRO-NTO. It was
directed to a user experiencing
difficulties. Investigate the possibility
of a problem in your external memory.
Don't forget, PRO-NTO makes extensive use
of alternate RAM. Perhaps you should run
your machine for a few days without PRO
NTO installed but with a full memDISK
installed. Write a large test file of
known data to the memDISK to fill it up.
Then examine the file's contents
periodically to detect if there were any
changes. For an intermittant problem, I
would first suspect a RAM problem.

John Foote wanted to change the printing
format of the ADDRESS application's
Rolodex-type card layout to use continuous
form 3x5 cards (like in CARD). His query
concerned the "pitch" of the ADDRESS card
printing and related to the "Rolodex" card
layout of 13 lines versus the 3x5 card
layout of 18 lines at 6 lines per inch. In
response to his letter, I advised him of
the fol lowing.

Product in Focus: PRO-NTO, PRO-WAM - 78 -

There are two choices. First, when you
invoke the "card" command of ADDRESS, you
have the option of keying in your own
print format. This is documented in the
manual on pages 2-3/2-4. What you need is
a print format that uses 18 semicolons;
the default format uses 13 semicolons to
be able to print 13 lines. You must
construct a format with that in mind. That
gives you total flexibility. Depending on
how frequently you print out your list,
you may consider keeping the format in a
record of the CARD application. Thus, when
you want to print out an address list to
3x5 cards, when the prompt appears for
"format", invoke CARD, search for the
format record, then EXPORT the format
string to ADDRESS.

You could still patch ADDRESS. Since the
PATCH command does not like semicolons
within a patch string, and the patch
listed in hexadecimal would appear
confusing, I prefer to tell you where in
the file to alter the DEFAULT string. This
would require that you have some sort of
file editor (like our LS-FED II, or our
Mister ED Editor Application pack).
Alternatively, you could design your new
format string and convert both the default
string and your new string to their
hexadecimal representation. The default
string is:

";;O 1 9;2 8;3 4;5 6 7;$;;;;;;;"

This string appears at relative record 8
with byte offset 48H. This means a patch
origin of "DO8,48=" if you choose to work
up a patch. To easily come up with a new
format string, you could remove 4 spaces
and the "$" from the default string to
give you room to add the 5 additional
semicolons. The string is terminated with
a carriage return not shown above since it
is already in the file following the last
semicolon.

The BRINGUP application of PRO-NTO
supports a date range of that currently
supported by the DOS. When TRSDOS 6.x is
upgraded to extend beyond December 31st,
1987, MISOSYS will shortly thereafter have

Product in Focus: PRO-NTO, PRO-WAM

I
I

....i

I
_J

J
I

_J

J
J
i

_J

J
J
J
J
J
J
J
J
J
J
J
J"••·

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

available a new release of PRO-NTO which
deals with the extended date. Registered
users will be notified at that time as to
the procedures and costs of updating.

On 05/12/86, We added, to the PRO-NTO
release disk, Lynn Sherman's modification
to SuperScripsit for use with PRO-NTO. See
the file SSFIX/TICT for the details. The
patches are · contained in the file,
PRONTOSS/JCL.

On 05/12/86, we also upgraded PSORT to
version 2.1. This permits you to sort a
PowerMA.IL adder file using PSORT. If you
need to upgrade to this version, the
charge is $5 ($6 if outside the United
States). Please return your PRO-NTO master
disk in a protective disk mailer with the
required fee.

In order to utilize PSORT 2.1 for the ZIP
code ordering of a POWERMAIL adder file,
you need to apply the following patch to
your PMAIL/ADD disk file: PATCH PMAIL/ADD
(D00,10=80 00 02 00 62 00 OA:F00,10=00 00 0

0 00 00 00 00). If you understand the
nomenclature listed at the bottom of page
2-9 of your PRO-NTO manual, you will be
able to redo the patch to sort on any
field of your choosing. Note also that you
can turn your ADDRESS/DAT data file into a
PowerMA.IL adder file by applying the
following patch to ADDRESS/DAT:

D00,30=" PowerMA.IL PLUS"
F00,30=00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

One PowerMA.IL/PRO-NTO user wanted to sort
his PMAIL/ADD file by ZIP code. Here are
some detailed instructions for this
scenario. It requires altering the adder
file so that the second line contains the
environment bytes needed by PSORT.

If you list the PMAIL/ADD file in hex
using a command such as "LIST PMAIL/ ADD
(HEX)" and pause it after the first four
or so lines have been listed, the second
line needs to be altered so that it will
look like the second line shown here
identified by "<lO>":

0123456789ABCDEF 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
==----======

•• p •••••••••••••
•••• b ••••••• • •••
disknamediskname

PowerMAIL PLUS

<oo>
<10>
<20>
<30>
<40>

00 00 50 00 00 00 00 00 00 00 00 00 00 00 00 00
80 00 02 00 62 00 OA 00 00 00 00 00 00 00 00 00
64 69 73 6B 6E 61 6D 65 64 69 73 6B 6E 61 6D 65
20 50 6F 77 65 72 4D 41 49 4C 20 50 4C 55 53 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

Note that the first seven values are "80
00 02 00 62 00 QA" which are what is
needed. This is what your patch needs to
accomplish. The easiest way to zap in
those values would be via a file editor
(such as LS-FED-II or the Mister ED
package available from us); edit the file
so as to make the second line look like
that shown above. It will enable you to
edit any of your adder files as well as
all other files, easily. Note that the
normal ADDRESS/DAT file can also be so
modified to enable it to be sorted into
ZIP code order by PSORT 2.1.

We had a report of a problem with CHARSET
not printing. The "problem" wasn't really
a bug in CHARSET but was caused by the use
of a line-buffered printer. Since most
printers these days are line-buffered, it
pays to put everyone on guard over this

Product in Focus: PRO-NTO, PRO-WAM - 79 -

condition. The user had an MX-100
connected to the computer. The MX-100 is a
line buffered printer and will not print
out a line until either (1) a print action
code is received, or (2) the line buffer
is full. Thus, if you output characters to
that printer, you won't see anything
print. If you repeatedly depress the
"Print" command until printing starts, you
are actually outputting the CHARSET
"string" once for each depression. Since
the MX-100 print buffer probably has 132
or so characters, it did not start
printing until that gets full. To see this
behaviour, add one of the print action
codes to the print string in CHARSET. For
instance, move the cursor to the X'OA' or
X'OD' values. Although the string will be
loaded with what appears to be a printable
character (at least displayable on the

Product in Focus: PRO-NTO, PRO-WAM

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I,i

screen), it will be interpreted as a LF or
CR by your printer.

Jack Savitz wrote us how he solved the
"disconnect" problem of the Modem-4P when
used with DIALER/APP, He sets up his"@"
macro to be "C-k-kMF" do do fast dialing, He
sets up the "A" macro with 16 "Ps". He
then sets the "O" macro to a "T" to be
able to output tone dialing. Now a dialing
string such as "05165551212A" now lets him
hit the "*" and disconnect at leisure
which is a lot better than trying to hit
it immediately after the last dial tone.

I sometimes wonder whether there are many
different kinds of 4P modems. John Yanosky
writes, "I tried and was successful in
applying the patches included in
DIALER4P/FIX. However, I was unable to get
what I think is proper operation using the
"@" macro, "C**M". In its place, I used
the Radio Shack Model 4 DESKMATE computer
dialing definition: "**C**MG@-DDT" and had
success."

Here's another solution
disconnect problem that
John Fadok. He asked for
the PRO-NTO DIALER
automatically send a
followed by an asterisk.
patch should do this:

to the 4P
I worked up for

a PATCH to have
application

series of P's
The following

, Patch to DIALER for Model 4P to
• automatically send a string of P's
• at the end of the dialing line to
• automatically disconnect the modem,
• Note that this is usable only for
• telephone communication,
D04,50=06 08 3E 50 CD 83 2B 10

F9 3E 2A C3 83 2B
F04,50=CD 81 2B 21 00 06 11 6C

2F CD OE 2E 01 00
• Eop

In the first line of the patch, the "08"
is the repetition counter. It will cause
DIALER to send 8 P's then the asterisk.
You can change that to some other
hexadecimal value (i.e. 06 for 6, QA for
10, etc,) to have whatever count you want,

Product in Focus: PRO-NTO, PRO-WAM - 80 -

The following are brief descriptions of
public domain applications which run under
the PRO-NTO/PRO-WAM window controller.
They are available in the DL3 section of
our Compuserve User Group. We heartily
thank the contributors of these software
packages,

MAPMEM.APP [70130,441] 08-Jul-86
3935(1696) 28 -> A PRO-NTO application to
display contents of selected low/high
routines. Direct comments to Don Brandt
70130,441, Version 3.5 computes machine
size and expands stack area,

MODEM.APP [70130,441] 07-Jul-86 5860(2528)
28 -> PRO-NTO application that supports
xmodem file transfers. Requires that *CL
be set to COM/DVR. Direct comments to Don
Brandt 70130,441,

SVCAPP,NEW [70265,113] Ol-Jul-86 2015(864)
34 -> Here is a new version of SVC/APP,
By popular demand, it includes a Search by
SVC Number ability as well as the ability
to use the original data file without any
special LRL. This version is from the
author of SVC.APP, Doug Tittle, who would
be glad to assist and/or improve as needs
dictate. Drop me a line. Enjoy! Doug.

MXDUMP.APP [72436,3604] 28-May-86
2610(1120) 26 -> A PRO-NTO application to
screen dump the Model 4 screen with lo-res
graphic characters. Rename to MXDUMP/APP.

SSPRN2.FIX [72057,55] 07-Mar-86 3360 27 ->
This is an update of SSPRON.FIX. These
patches will allow somewhat smoother
access to PRO-NTO from SS if you change
your PRO-NTO activation code to one of the
invalid control codes in SS that normally
produce an error.

LIST.APP [76317,2576] 28-Dec-85 5545(2368)
63 -> File lister module for PRO-NTO.

OM.BIN [71426,625] 19-0ct-85 3905(1696) 51
-> PRO-NTO application. Download and
rename DM/APP. Condensed version of
DMAP.BIN. Shows where programs reside on
your disk. Works on 40 track single sided
double density disks only. Requires PRO
NTO to operate. -Dick Newman.

OLYMPI.APP [70406,1107] 22-Jun-85 835 66 -
> This is an updated version of a PRO-NTO

Product in Focus: PRO-NTO, PRO-WAM

I
,_J

I

J

I
..J

l
I

.....I

J
J
J
J

I
.....I

I
.....I

I
_J

J
J
I

.....I

J
J
J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

window application for your Olympia NP (or
Epson) printer. If anyone would like a
version customed to their printer just
leave a message and I'll see what I can
do! This version fixed a small
initialization problem that affected the
Pronto Application Window.

OKIDAT.BIN [72145,640] 04-May-85
2930(1280) 21 -> Okidata printer setter.
Is an application program designed to run
with PRO-NTO. Rename to Okidata.app.

The following PRO-NTO application has been
submitted by Bryan Headley. "Here is a
diskette, with a submission for your
upcoming MISOSYS QUARTERLY. Hopefully, it
will arrive in time! Moreso, in that in
preparing this diskette for you, I decided
to create a new version of the software.
Everything as of 10 P.M. this evening is
going great [July 23rd -ed]; the new
version was re-assembled and tested,
documentation revised, and this letter is
being written. A close shave!

I decided not to place my submission into
the public domain. Instead, I own the
copyright, and have granted users the

BinCalc/WinCalc

right to reproduce for personal, non
profit use. I find this a preferable
resolution, in that all parties come out
winners. Both the documentation and source
code state this.

This might be used in your introduction to
the submission:

"WinCalc is a programmer's calculator. It
provides all the mathematical and logical
operations a Z-80 programmer may require
during the development and maintenence of
assembly-language programs."

Actually, I find WinCalc a blessing. I've
been stuck too many times, trying to
remember what 65 OR 20H is, or what 14312
is in Hex. After the millionth time, I
decided to do something about it.
Originally, the program was to merely
support addition, subtraction, AND, OR,
NOT, and the rotate commands. But, then
came the shift commands, Octal and ASCII
modes, the flag commands, etc ••• All in
all, the code is dense! I looked, and
there's ONLY ONE BYTE stuck in the end of
the code as the filler (to make the code
end at x'3000')!!

(C) Copyright 1986, Bryan W. Headley. All rights reserved.
This program may be reproduced for personal, non-profit use only.

Introduction

+------------------------------------+
I+----------{ Bryan's Binary Calculator}========+
I 11 0 N Sign N Zero N Junk N BCD 11
I I !Dec 8 Bit (- .) N Junk N P/0 N Subt N Carry! I
I+={ MODES}======{ BITWISE}={ ROTATE/SHIFT}=+
I [AB]in [AD]ec [&] AND [I] OR [L] RLCA [SJ SLA
I He[AX] [AO]ct [A] XOR [!] NEG [l] RLA [s] SRA
1 rAAJscII r-1 cPL ['J DAA [RJ RRCA rARJ sRL
I --{MATH}-----{ COMMANDS}-- [r] RRA
I [+] Addition [AC] All Clear -{ ~RD LENGTH}
I [-] Subtract [AN] Clr. Entry [AE] 8-Bit Entry
I [=] Equals [AL] Set Flags [AS] 16-Bit Entry
I [\] Set Carry [/] Cpl Carry
+--------------- -------------------------------+

BinCalc is a programmer's calculator,
oriented towards those users who develop
or maintain Z-80 assembly language code.
The calculator exists in two forms: the

stand-alone BinCalc (BINCALC/CMD) and the
PRO-NTO application WinCalc (WINCALC/APP).
The PRO-NTO application implies that the
calculator exists as a pop-up, similar in
concept to the capacities associated with
SideKick. Capacities

Product in Focus: PRO-NTO, PRO-WAM - 81 - Product in Focus: PRO-NTO, PRO-WAM

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

As BinCalc is a programmer's calculator,
absolutely no effort has been expended in
providing support for floating point
arithmetic nor numbers beyond x'FFFF'.
These functions are of little use to
assembly language programmers.

BinCalc offers two operational modes: 8-
bit and 16-bit. When in 8-bit, all logical
and math operations are done on 8-bit
quantities. This corrolates to working
with a member of a register pair in Z-80.
When in 16-bit mode, math is done on 16-
bit quantities, akin to working with
register pairs. Note that logic
instructions are not valid in this mode;
this corresponds to the capacity of the Z-
80 processor.

Features

BinCalc allows the user to determine the
resultant value from a mathematical or
logical formula. In so doing, BinCalc
maintains and reports the state of the Z-
80 registers after each instruction. This
is very useful when developing code, and

trying to determine value range
filtration/determination routines.

Entry Modes

BinCalc supports a number of numeric entry
bases. These include Binary, Octal,
Decimal, Hexidecimal, and Ascii. When in
any except ASCII, data entry and system
output are accepted/displayed in the
selected base. When in ASC-II mode, all
keystrokes (1 for 8-bit, 2 for 16-bit
modes) are accepted as input; the ASCII
value of these keystrokes are taken as
entry. Any and all keystrokes, including
backspace, Enter, Break, etc., are
accepted as entry. Upon completion of
entry, the numeric base of the system
automatically reverts to the previous
setting.

Example: In decimal mode, ASCII mode is
selected. The user presses "A". The system
returns to decimal, and indicates that
"65 11 is the value entered by the user.

+---+
I +----------{ Bryan's Binary Calculator}========+ I
I 11 0 N Sign N Zero N Junk N BCD 11 I
I I !Dec 8 Bit (- •) N Junk N P/0 N Subt N Carry I I I
I+={ MODES}======{ BITWISE}={ ROTATE/SHIFT}=+ I
+--+

Status Line

BinCalc uses the status line to display
information to the user. The status line
is used to display numeric entries as
typed, the response from a calculation,
the current numeric base, operand width,
flag status, and the current number's
representation in ASCII.

Entry of Formulae

BinCalc is an algebriac calculator;
formulas to be calculated are entered in
"normalized" fashion. For example, to add
2 to 5, the user enters the following:

2+5=

Note that the equation terminator is
required. In the above example, the equal

Product in Focus: PRO-NTO, PRO-WAM - 82 -

sign is used(=). The user may also opt to
use the <Enter> key in this capacity.

Mixed-Mode Calculations

Circumstances arise where the user may
wish to add a decimal number to a
hexidecimal, seeing the result in binary.
BinCalc has provisions for handling these
situations. The four primary modes may be
selected prior to the entry of the
mathematical operator. For example, let us
assume that the user is to add 2 decimal
to 00000011 binary, and wishes to see the
result in octal. Further, [AD] selects
decimal mode, [AB] selects binary, and
[AO] selects octal. The sequence (with the
principals separated by spaces) then would
be:

Product in Focus: PRO-NTO, PRO-WAM

I
J

(

_J

I
I

_J

I
....J

J
I

_J

I
l
I

.....J

I
_J

J
I

I
...J

J
I

.....J

J
I

J

i
I

_j

J
I

_j

I
....J

J

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

Setting Flags

BinCalc has the ability for the user to
set up the initial state of the Z-80 flag

register prior to a calculation. To
initiate this, press [-LJ. The current
number in display is removed, to be
replaced with the following:

+---+
I+=========={ Bryan's Binary Calculator}========+ I
I I ISZ?H?PSC N Sign N Zero N Junk N BCD I I I
I IIFlg 8 Bit (- .) N Junk N P/0 N Subt N Carry! I I
I +={MODES}======={ BITWISE}={ ROTATE/SHIFT}=+ I

The 'S' signifies the Sign Flag, the 'Z'
the Zero Flag, etc. The cursor is position
at the current flag to be modified. The
user may press the plus key(+) to signify
that a flag indicated by the position of
the cursor is to be set, or the minus key
(-) to signify that the flag is to be
reset. Pressing any other keystroke
indicates that the current setting of the
given flag is to be retained. All

keystrokes are legitimate entries,
including <Enter>, <Break>, etc.; there's
no escaping Flag mode until the values of
all 8 flags have been indicated.

In addition to explicitly setting
you may also use the Complement
Carry commands. These behave as
and SCF respectively.

flags,
and Set
per CCF

I+={ MODES}======{ BITWISE}={ ROTATE/SHIFT}=+
I [-B]in [-D]ec [&] AND [I] OR [L] RLCA [S] SLA
I He[-x] [-o]ct [-J XOR[!] NEG [l] RLA [s] SRA
1 r-A1scII r-1 cPL ['J DAA [RJ RRcA r-RJ sRL
I --{MATH}-----{ COMMANDS}--- [r] RRA
I [+] Addition [-cJ All Clear -{ WORD LENGTH}
I [-] Subtract [-NJ Clr. Entry [-E] 8-Bit Entry
I [=] Equals [-L] Set Flags [-sJ 16-Bit Entry
I [\] Set Carry [/] Cpl Carry
+---+

Unary Operators

Unary Operators take immediate effect upon
the numeric entry currently being
displayed. Unary Operators include RLCA,
RLA, RRCA, RRA, SLA, SRA, SRL, NEG, CPL,
and DAA. Of these, Unary operations may
only be performed upon 8-bit values, with
the exception of the DAA command. For
example, the user wishes to rotate the
binary value 01010101 2 times to the right
(RRCA). The sequence used is:

[-BJ 01010101 [R] [R]

Mathematic and Logical Operators

Mathematic and Logical Operators require
two numeric entries. Mathematic operations
allows for addition and subtraction on
both 8 and 16-bit operands. Logical
operations may only be performed on 8-bit
operands, and include AND, OR, and XOR.
Examples below show sample math and

Product in Focus: PRO-NTO, PRO-WAM - 83 -

logical operations:

2 + 3 = [AB] 01010101 & 11110000 =

Erroneous Entries

Erroneous numeric entries often may be
corrected by pressing the backspace key,
so long as the user has not already
entered the symbol associated with a
mathematical, logical, or unary operator.
In cases where an entire number has been
entered (but for some reason is
incorrect), the user may opt to clear the
entry with the [-NJ key.

If the user has entirely botched
everything up, he may press the 'All
Clear' button, [-cJ. This key resets all
formulae entered to date in the system.
The user may then proceed to re-enter
this •.

Should an entry be erroneous (e.g. a key

Product in Focus: PRO-NTO, PRO-WAM

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

sequence not understood by BinCalc), a
short tone will sound,

Data Importation and Exportation

The Windowing BinCalc (WINCALC/APP), which
operates under PRO-NTO, has the ability to
import and export information. Numbers and
formulae may be imported (read) from the
screen of the "foreground" application and
handled by BinCalc as though keystrokes
from the keyboard. Results from
calculations performed by BinCalc may also
be returned to the foreground application,

To initiate importation, press <CLEAR>
<LEFT-ARROW>. The BinCalc window
disappears, and the "foreground"
application's screen is returned to it's
initial state. The cursor is found
blinking in the upper left corner. Use the
arrow keys to position the cursor to the
area where the user wishes importation to
begin. Press <-B>. An "[" character will
mark this location. Now position the
cursor to the position of the last
character to be imported, and press
<SHIFT) <ENTER). All text, from the
beginning marker to the location of where
the cursor was when the <SHIFT> (ENTER>
keys are pressed are read from the screen,
and sent to BinCalc as though typed at the
keyboard,

To initiate Exportation, press (CLEAR>
(RIGHT-ARROW>. The cursor is positioned to
the upper left corner of the BinCalc
window. Using the arrow keys, position the
cursor to the beginning of where the user
wishes to begin exporting (writing) text
to the "foreground" application. Usually
this is the portion of the status line
where an answer is stored, Press <-B>. An
"[" marker will mark this location. Now
position the cursor to the position of the
last character to be exported, and press
(SHIFT) <ENTER). BinCalc terminates,
exiting to the "foreground" application.
The text to be exported is buffered as
keyboard entry. The nature of the
"foreground" application determines how
the exported text is handled.

Exiting BinCalc

To exit BinCalc, press the <BREAK> key.

Product in Focus: PRO-NTO, PRO-WAM - 84 -

Capacities

1) Numeric Bases Supported:

Binary Octal
ASCII

Decimal Hexidecimal

2) Range of numeric entry:

o •.. o o •.• o ...
0 ... 177777
0 ... 65535
0000 • • • ££ff
\0\0 •• \ff \ff

1, •• 1 1 ••• 1 Binary
Octal

Decimal
Hexidecimal

ASCII

3) Operators (16-bit numbers)

Addition, Subtraction, DAA

4) Operators (8-bit numbers)

Addition, Subtraction, AND, OR, XOR,
CPL, NEG,DAA, NOT, RLCA, RRCA, RRA,
RLA, SLA, SRA, SRL

Of Interest

The Z-80 supports two subtraction
commands: SBC and SUB. SUB is only
provided for 8-bit operations, while SBC
is supported across the board. So, all
subtraction commands are implemented via
SBC. The decision to do this came from the
author's determination that no intuitative
command symbol could be thought of to
differentiate a subtract from subtract
with carry. Additionally, the user may opt
to complement the carry flag prior to
subtraction, thereby simulating SUB (one
would assume that the user would
complement the carry flag back!)

On the other hand, 8-bit and 16-bit
additions are implemented through the ADD
instruction. Again, no intuitative symbols
for ADC were thought of, ADC is easily
emulated by adding 1 to the result if the
carry flag is set.

THE following is the WINCALC/APP
application in BINHEX format. The /APP
file and a documentlation file are
available on the DISK NOTES 4 disk (see
THE BLURB). If you feel like typing all of
this in to a file, us the BINHEX command
to convert it into a binary file named

Product in Focus: PRO-NTO, PRO-WAM

J
I

J

J
J
J
J
I __,

J

J
J
J
J
J
J

J
J

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I.i

WINCALC/APP. Thereafter, it should be available as a PRO-NTO application pop-up.

50524F4E544F42696E6172792043616C6320030000000000000000000000
000003000A00
00
00
00
00
003037
2F32332F383632313A35323A3438436F7079726967687420313938362042
7279616E20572E20486561646C657920210A0311330C06073E7CEF280606
053E68EFC921222606103E20772310FC3E037721000006033E7CEF21122D
060A3E7CEFC3452ACDC12B0100003E7CEF4FFE30380EFE3A382EE6DFFE41
3804FE4738247921712F012100EDA12814E26228232318F506053E68EF3A
FC2FB720CA18C55E2356EBE9F53AFC2FB7CCA82BF14F3ADB2FFE10792804
FE0030D83AFC2FFE0028Dl3C32FC2F792AFD2F772322FD2F06093E7CEF3A
FB2FF60132FB2FC337283AFC2FB7C44029AF32FC2F21002622FD2F3ADA2F
FE55473AFB2F2010E60128062AD42F22D62F3E0232FB2FC9FE01200A2AD4
2F22D62FF6021802F60132FB2F78FE4FC8B7CA34282AD82FE52AD62FED5B
D42FFE2B2004Fll9181FFE2D2005FlED52181606A3FE26280806B3FE7C28
0206AB78322529Fl7DA36F22D62FF5El22D82F3ADC2FB73E00200332D72F
32DA2FC334282100263AFC2F471100003ADB2FFE10280AFE0A2848FE0828
1El832C57ED630FE0A3802D607EB06042910FDEBB35F23Cll0E9EB22D42F
C9C57ED6300603EB2910FDEBB35F23Cll0EFEB22D42FC97ED630EB29EBB3
5F2310F5EB22D42FC92AFD2F360D2100263E60EFC5El22D42FC911ED4418
2Bll002Fl826110027182811000Fl81Cll001Fl817110007181211001718
0DllCB27180811CB2Fl80311CB3F3ADC2FB7C26228D53E5532DA2FCDAE28
El22FB292AD82FE5Fl2AD62F7DCB3F6F22D62FF5El22D82FAF32DA2FC334
284F3ADC2FB7C2622879F53E4F32DA2FCDAE28Fl32DA2FC334283El0180A
3E0A18063E0818023E02F53E4F32DA2FCDAE28AF32DA2FF132DB2F3ADB2F
FE1020070E47210204181BFE0A20070E3A2103051810FE0820070E382103
0618050E322108103ADC2FB77C20017D328E2879328728C3342821030206
033E7CEF21Fl2F060A3E7CEFCDA82B21582F060A3E7CEF21030106033E7C
EF06082AD82FC50100003E7CEFC10El9FE2D20077D0E2DE67Fl80CFE2B20
077D0E2BF68018017D076FC506093E7CEFC110D422D82FC334282AD82FE5
Fl3FF5El22D82FC334282AD82FE5Fl37F5El22D82FC3342821030206033E
7CEF21DD2F060A3E7CEFCDA82B060221D52F3ADC2FB72002052BC5010000
3E7CEFC1772B4FC506093E7CEFC110ECAF32FC2F3AFB2FF60132FB2FC3AE
283AFC2FB7CA62282AFD2F2B22FD2F3D32FC2F0E0806093E7CEFC337283E
0018023E0132DC2FAF32D52F32D72FC3452A21000022D62F22D82FAF32DA
2F32FB2F21000022D42F21002622FD2FAF32FC2F3AFB2FE60232FB2FC362
280E00FE8920010C06083E7CEFC9060B3E7CEFC3342821030106033E7CEF
212226060A3E7CEF21030106033E7CEFC9CDA82B21030206033E7CEF21El
2F3ADB2FFE10281121E92FFE0A280A21ED2FFE08280321E52F060A3E7CEF
21070206033E7CEF21F52F3ADC2FB7F5200321F82F060A3E7CEF210F0206
033E7CEF2AD62Fll892DEB7BCDE52C772B2B7ACDE52C57Fl2002162D7A77
06037E4FC506093E7CEFC12310F421030106033E7CEF2AD62Fllll263ADB
2FFE10286FFE0A2872FE08281A3ADC2F0610B720050608652E007CE68007
F63012291310F518573ADC2FB73E0101058020070102C0652E003C32AB2C
32B42C7832A92C79329E2CCDA62C3E0332AB2C32B42C3EE032A92C0600CD
A62Cl0FB181EC57CE68006000710FDC630121306002910FDClC9EB3E63EF
EB18033E61EF3E0312211126060A3E7CEF2AD82Fll612F0608CDF02Cl0FB
21030106033E7CEFC9FE203804FEC038023E2EC9C5D5E5EB5E2356EB0603
3E7CEF0E59El7DE68020020E4E06093E7CEFD1Cl291313C9202B3D3D3D3D
3D3D3D3D3D3D7B20427279616E27732042696E6172792043616C63756C61
746F72207D3D3D3D3D3D3D3D3D2B0A207C7C202020202020202020202020
20202020204E205369676E204E205A65726F204E204A756E6B204E204243

Product in Focus: PRO-NTO, PRO-WAM - 85 - Product in Focus: PRO-NTO, PRO-WAM

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

4420207C7COA207C7C20202020313620426974202820202029204E204A75
6E6B204E20502F4F20204E2053756274204E2043617272797C7COA202B3D
7B204D4F444553207D3D3D3D3D3D3D3D7B2042495457495345207D3D3D7B
20524F544154452F5348494654207D3D2BOA205B5E425D696E205B5E445D
656320205B265D20414E44205B7C5D204F522020205B4C5D20524C434120
5B535D2020534C410A2048655B5E585D205B5E4F5D637420205B5E5D2058.
4F52205B215D204E454720205B6C5D20524C4120205B735D20205352410A
205B5E415D53434949202020202020205B7E5D2043504C205B605D204441
4120205B525D2052524341205B5E525D2053524COA202D2D7B204D415448
207D2D2D2D2D2D2D7B20434F4D4D414E4453207D2D2D2D205B725D205252
410A205B2B5D204164646974696F6E2020205B5E435D20416C6C20436C65
61722020202D7B20574F5244204C454E475448207D2D0A205B2D5D205375
6274726163742020205B5E4E5D20436C722E20456E74727920205B5E455D
2020382D42697420456E7472790A205B3D5D20457175616C732020202020
5B5E4C5D2053657420466C6167732020205BSE535D2031362D4269742045
6E7472790A205B5C5D2053657420436172727920205B2F5D202043706C20
436172727903535A3F483F5053430314011B012201290114021B02220229
0208392B02322A042A2Al8262AOF2E2A01F62A2Bl62A2D162A3DAE280DAE
28260D2A7C0D2A5EOD2A21AE297EB32960B8294CC7296CCC2952BD2972C2
2953D12973D62912DB2905552Bl3592B03682BOE782BOC802A80932B8993
2B88A02B5CE82A2FDA2A000000000000000A00417363034865780342696E
03446563034F637403466C67033136032038030000002600
*7A

Bigger bubbles for your 5-megger

Here's a tip from Ray Pelzer 70475,1263
which concerns a method of adapting other
Tandon hard drive bubbles to the Radio
Shack SMeg hard drive system. It was
posted on our Compuserve SIG. "To make a
Tandon drive work in a Radio Shack
controller, 3 jumpers are added to the
TM600 main microprocessor board. The first
is a line from the feed-thru hole close to
and between pins 8 & 10 of connector Jl,
over to the closer end of resistor R68
(the only resistor close to it). Then,
you'll find 2 stubs of wire-wrap wire.
Both go to 09 near J2. One stub from pin 1
to the near end of R64, and the other from
pin 2 to the near end of Rl4 beside it.
Those three wires are not on the original
Tandon drives, and are added to make the
Active light and Write Protect switch work
in a Tandy case/controller set. I added
those jumpers to a 15-meg bubble,
reconnected the 3 wires from the
controller & case, and bingo! All set.

Notes on the AlphaTech memory board

The following information concerns the
Alpha Technology SuperMEM memory board for
the Model 4. This board was reviewed by

The Hardware Corner - 86 -

Hardin Brothers in the January 86 issue
[RAM Tough]. MISOSYS has patches available
for TRSDOS 6.2 so that the DOS can
properly address the memory board by Alpha
Technology. As the primary author of
TRSDOS 6.x, I steadfastly believe in
standardization; thus, I spent my time
working with the folks at Alpha Technology
as well as with Bentley Mitchell, the now
deceased author of the RAMdrive package,
in order to ensure that programmers had a
uniform protocol of accessing the extra
memory.

Since the DOS already supported a scheme
of bank switching via the @BANK supervisor
call, I worked to extend that scheme so as
to support the switching of 31 banks
rather than the 3 available in a 128K
machine. The extended @BANK support was
implemented via three patches to the DOS -
two of them quite large. As Hardin
reported, MISOSYS makes these patches
available to anyone wanting them. There is
no charge for the patches; MISOSYS is
supplying them free to encourage the
maintenance of standards. We only ask
everyone's cooperation to minimize the
time it takes us to deal with these
"freebie" requests. Thus, those wanting a
copy of the patches, must adhere to the
following. (1) Send a diskette in a

The Hardware Corner

J

J
J
J
J

I
..J

J
I

...J

J
I

J

J
J
J
J

I
J

...J

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

diskette mailer to: MISOSYS, Inc. (attn:
ATP), PO Box 239, Sterling, VA 22170-0239.
(2) Enclose a return address label that we
can apply to your mailer. (3) Enclose
postage in US stamps adequate to return
the mailer and disk or enclose US funds
rounded up to the next dollar for the
postage. The patches are also available on
Compuserve from the DL3 section of our
SIG, PCS49.

In addition, anyone having a copy of the
patches may freely give them to anyone
else or place them on any bulletin board
of their choosing or print them in any
TRS-80 computer club newsletter. MISOSYS
should be credited as the originator of
the patches. Note that the patches have
been placed into the public domain with
commercial rights reserved by the author.

Note: There is
software package
available from
section.

a public domain ramdrive
described below. It is

our Compuserve SIG DL3

A few users cannot BOOT the TRSDOS 6.2
disk after application of my patches for
the Alpha Technology memory board. This
points to a defective memory board. I am
aware of a few instances where Alpha Tech
has shipped a board which would not work
with our patches.

The Alpha Tech board has a RAMPORT which
is used to enable the memory banks of the
board. This port is supposed to be two
way; i.e. you are supposed to be able to
OUTPUT to the port as well as INPUT from
the port. There have been cases where the
board was defective and INPUT from the
port resulted in a constant X'FF' value.
My software patches require the port to be
fully functional in both directions. You
can easily test for two-direction
capabilities as follows: (1) From DOS
Ready, type "DEBUG"; then depress the
<BREAK> key to cause the DOS debugger to
become invoked. (2) From the debugger,
type the command "Q43" followed by the
<ENTER> key. If the display to the right

The Hardware Corner - 87 -

of the "43" shows "FF", the board is
defective. If it shows "OO", the board is
NOT defective. (3) After observing the
result, type the letter <o> followed by
<ENTER> This causes an exit from DEBUG and
returns you to DOS Ready. At this point,
type "DEBUG (N)" and the debugger will be
deactivated. Your tests should prove a
defective board; contact your board
supplier for resolution.

The Alpha board is sold by AlA Computer
Division in Indian Harbor Beach, FL. I
spoke with the folks down t~ere to apprise
them of the few instances of defective
boards and I am sure they will assist you
in clearing up any troubles you may have.

We are also aware that other hardware
companies have developed add-on memory
boards for the Model 4. In the interest of
standardization, I would hope that those
companies get in touch with us so that
appropriate patches to TRSDOS 6.2 can be
developed to communicate with their boards
via @BANK.

I am sometimes surprised that the MSDOS
world boldly announces new breakthroughs
in memory addressability of the IBM PC
with the Lotus/Intel/Microsoft standard
for banked memory! The Model 4 had that
over two years ago. What is needed are a
continuation of standards for the memory
add-ons to the Model 4. The MISOSYS
patches provide the extension to the @BANK
standard Model 4 users have enjoyed for
over 2 years now.

RAMDRV.LQR [74076,762) 17-Mar-86
63190(26976) 25 -> RAMDRIVE is a series of
drivers that utilize the ALPHA TECH memory
board and Roy Soltoff's TRSDOS 6.2.x @BA~K
patches. The drivers allow for multiple
memory drives and 40/80 track 1/2 sided
drives so that backup and lsqfb can be
used. FDR6 has been included with the
appropriate @BANK changes. Comments and
suggestions appreciated. Michael Jacobs.

The Hardware Corner

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986 Volume I. i

The PATCH Corner: General Information

The following information should· be read
before you type into a file, any of the
patches noted in THE MISOSYS QUARTERLY.

It is unfortunate that our printer prints
the letter 110 11 and the number "O" almost
identically. Unless we utilize a filter to
"slash II the number zero, the two are
difficult to distinguish. However, when it
comes to patches, all is not lost. In an
LOOS 5 or TRSDOS 6 direct patch, the
letter "oh II is not used in the patch code
(it may appear in comments which are lines
beginning with a dot). The direct patch
format of TRSDOS 6 which we use in our
patches is:

Drr,bb=xx xx xx xx xx xx
Frr,bb=xx xx xx xx xx xx

The patch is usually a pair of lines. The
first line begins with the capital letter,
"dee". This is immediately followed by the
"rr" field (which stands for record). The
"rr" field is always two hexadecimal
digits. Actually, it can be a 4-
hexadecimal digit number if the file to be
patched has more than 256 sectors. Hex
digits use nothing but the numbers zero
through nine and the first six letters of
the alphabet: A,B,C,D,E,F, or
a,b,c,d,e,f. The record number is
immediately followed by the "bb" field
(which stands for byte). The byte field is
also two hexadecimal digits just like
the record field. This is immediately
followed by an equal sign, "=". The equal
sign is immediately followed by the first
patch byte (the "xx" shown above). The
patch byte is again two hexadecimal
digits, Where more than one patch byte is
included on a line, it is separated from
its predecessor by a single SPACE. The
line is terminated with an ENTER,

TRSDOS 6 patch format uses a "find" line
record. This is used to verify that the
the file being patched is actually the
file you want patched. All of the bytes
noted in the "F" line or lines must be
matched in the file before any of the "D"
patches will be utilized. The second line
of the pair begins with the letter "F"
which stands for FIND. The next six
positions are identical to the preceding
"D" line. Following the equal sign on the
FIND line are pairs of hexadecimal digits
which should align themselves with the
preceding line.

So far, the letter "oh" is not used. The
only place outside of a comment line where
you could find the letter "oh" used is if
instead of showing the patch bytes as a
series of hexadecimal pairs, it was
depicted as a string. A string could be
used if one was patching a string of
displayable ASCII characters. For
instance, the patch:

D03,14="This is a new string"
F03,14="extra space for what"

would replace the string, "extra space for
what", with the string, "This is a new
string". Strings are shown within double
quotes. That's the only place where a
letter "G" through "Z" could be used.

Also, even though TRSDOS supports the
colon notation to put more than one patch
line on the command line (e.g. "PATCH TEST
(DOl,27=56:FOl,27=65)"), it does not
support the colon separator when used in a
FIX file. The "D" and corresponding "F"
records must be on physically sepapate
lines. In order to conserve space in THE
MISOSYS QUARTERLY, we may logically print
more than one FIX line on a printed line;
HOWEVER, ALWAYS USE A HARD <ENTER> FOR THE
COLON WHEN TYPING IN A FIX FILE •

• M4F80JCL/FIX - Harry G Clayton Jr - 10-0ct-1985
Apply to Model 4 (F80/CMD) FORTRAN-80 Ver. 3,44

• fixes JCL abort when F80 exits
X'5CBA'=21 00 00

The PATCH Corner - 88 - The PATCH Corner

J
I

_J

i
I

J

I
J

J
J
J
I

..J

J
J

J
J

i

J

J
J
J
I -

J
j

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986

.M4M80TTL/FIX - 28-Feb-1986 - Harry G Clayton Jr
• This patch causes M80 to read current date for listings
• Also displays logon message
• This patch is for M80 Ver. 3.44 (comes with Model 4 FORTRAN) only
X'3006'=C3 OA 76
X'4908'=09 44 4F 53 36 20 4D 38 30 20 33 2E 34 34 20 09
X'4918'=58 58 20 58 58 58 20 58 58 09 50 67 2E
X'760A'=E5 21 62 76 3E 12 EF 2A 65 76 22 18 49 2A 68 76
X'761A'~22 iF 49 2A 62 76 7D D6 30 06 00 28 02 06 OA 7C
X'762A'=D6 30 80 3D 47 87 80 21 6A 76 16 00 SF 19 11 lB
X'763A'=49 01 03 00 ED BO 3E OD 32 21 49 3E 20 32 17 49
X'764A'=21 09 49 3E OA EF 3E 09 32 21 49 32 17 49 21 2F
X'765A'=71 22 07 30 El C3 2F 71
X' 766A' =" JanFebMarAprMayJunJulAugSepOctNovDec"
X'768E'=30

• ADEDCT53/FIX - 02/07/85 - Patch to Model I/III ADE/DCT
• file dated October 26, 1984. Patch corrects operation on Model I
• Install via: PATCH ADE/DCT ADEDCT53
DOC,D7=Cl; WAS 4E
DOD,25=22 37 63 21 4E 44 22 9B 6E C9; WAS ZEROES
DOF,19=CD El 6F; WAS 22 37 63

• ALTDISKl/FIX - 02/07/85 - Patch to PRO-ESP module ALTDISK/CMD
• This patch corrects operation of ALTDISK's use of a low-memory

area for stack space during bank swap operations.
, Apply via: PATCH ALTDISK ALTDISKl
D01,F0=23:F01,F0=17:D01,F7=15:F01,F7=17
D02,09=23:F02,09=17:D02,l2=15:F02,12=17
D05,71=2E 36 47 36 83 36 94 36 00 00 B6 36
FOS,71=16 36 2E 36 47 36 83 36 94 36 00 00
D06,7E=OO 00 00 00 00 00 00
F06,7E=ED 73 4C 36 31 00 04
D06,B5=21:F06,B5=31
D07,2l=F3 ED 73 C9 36 31 20 03 3E 66 EF CS 01 00 01 ED
F07,21=3E 66 EF CS 01 00 01 ED BO Cl 3E 66 EF C9 00 00
D07,31=BO Cl 3E 66 EF 31 00 00 FB C9
F07,31=00 00 00 00 00 00 00 00 00 00

• Patch to DIALER for Model 4P to automatically send a string of P's
• at the end of the dialing line to automatically disconnect the modem,
• Note that this is usable only for telephone communication.
D04,50=06 08 3E 50 CD 83 2B 10 F9 3E 2A C3 83 2B
F04,50=CD 81 2B 21 00 06 11 6C 2F CD OE 2E 01 00

• DDII/FIX - 02/02/85 -
, PATCH PRO-DD&T VERSION OF DD FOR USE WITH LS-DOS 6,2 MODEL II
DOO,F8=El:FOO,F8=DC:D05,01=21:F05,01=26:D05,04=22:F05,04=27
D05,0C=EO:F05,0C=DB:D05,0F=El:F05,0F=DC:D05,41=E9:F05,41=E4
D06,7D=lF:F06,7D=lA:D08,43=1A:F08,43=15:D08,49=1F:F08,49=1A
D08,A6=1F:F08,A6=1A

, DDTD51/FIX - 06/03/86 - Patch to DD&T's DD/CMD module
• Patch to change module name to "Dl" from "DD" to
• avoid conflict with the module name of diskDISK,
D03,6F=31:D05,40=31

The PATCH Corner - 89 -

Volume I.i

The PATCH Corner

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986

DDTD61/FIX - 06/03/86 - Patch to PRO-DD&T's DD/CMD module
• Patch to change module name to "D:l" from "DD" to

avoid conflict with the module name of diskDISK.
D03,25=31:F03,25=44:D04,ED=31:F04,ED=44

• DEDSl/FIX - Patch to DED 3.0la of MSP-02
• Patch corrects operation on multi-head hard drives
Dl7,FE=ll 07 00 19 7E E6 lF SF 7E AB 07 07 07 3C lC 57
• WAS =ES 21 07 00 Dl 19 6E 26 00 ES 21 lF 00 Dl CD 46
Dl8,0E=AF 67 83 15 20 FC 6F:. WAS =BF ES 21 01 00 Dl 19

. DED61/FIX - Patch to DED 3.0la of PRO-ESP
• Patch corrects operation on multi-head hard drives
Dl8,0D=ll 07 00 19 7E E6 lF SF 7E AB 07 07 07 3C lC 57
Fl8,0D=ES 21 07 00 Dl 19 6E 26 00 ES 21 lF 00 Dl CD 04
Dl8,1D=AF 67 83 15 20 FC 6F:Fl8,1D=7E ES 21 01 00 Dl 19

• DESCSl/FIX - 01/18/85 - Applied 00004
• This fix must be applied to be able to <C>reate descriptor data under
• Model III LOOS. Note: The DESCRIBE documentation stated that the password
• used for DESCRIBE/CMD was DESCRIBE. The actual password used on serial #s

00001 through 00003 was PDS. Apply via PATCH DESCRIBE.PDS DESCSl
DOF,60=CD SD 6F:DlC,01=03 22 74 SE 21 90 42 22 57 69 C9 00 00

• DESC52/FIX - Patch to DESCRIBE
This fix corrects the titling for printing directories

• Install via: PATCH DESCRIBE.DESCRIBE DESC52
• Inhibit ETX from being output in title nouns
DOC,OC=FE 20 DB CD 2C SC 18 F6:. WAS =CD 2C SC FE 20 30 F7 C9
• Output the title display via <P> on every page
DOB,37=CD A7 SE:. WAS =CD 3E SC
DOD,92=11 03 CD 3E SC 3E 3C 32 4A SC C9

WAS =69 66 69 63 61 74 69 6F 6E 11 03

• DESC53/FIX - Patch to DESCRIBE - April 22, 1985
• This fix corrects the <c> command when extending the directory of certain
• hard drive partitions; inhibits extended directory records from <F> command.

Apply via: PATCH DESCRIBE.DESCRIBE DESC53
DOA,53=CD 78 SF 20:. WAS =lA E6 10 28
DOE,69=1A E6 90 FE 10 C9:. WAS =00 00 00 00 00 00
DlE,59=CD 91 76:. WAS =CD 39 44
D22,F3=CD 39 44 CS FE 06 C9:. WAS =00 00 00 00 00 00 00

DESC54/FIX:3 - Patch to DESCRIBE - 05/01/85
Patch to add to DESC53/FIX to correct operation with large capacity hard

• drives when VERIFY=ON. Apply via: PATCH DESCRIBE.DESCRIBE DESC54
D22,f9=CO DS DD El DD 34 OA 20 03 DD 34 OB AF C9

was =C9 00 00 00 00 00 00 00 00 00 00 00 00 00

• DESC61/FIX - 02/14/85 - Patch for PRO-DESCRIBE
• Patch corrects the operation of the REMOVE DESCRIPTORS command so that the
• DOS de-allocates the freed up space. Apply via: PATCH DESCRIBE.PDS DESC61
• Note: DESCRIBE/CMD is documented to have a password of "DESCRIBE"; however,

it was set to "PDS" when DESCRIBE was released. Please change the password
• via the command: ATTRIB DESCRIBE/CMD.PDS (O=DESCRIBE)
Dl5,D9=CD AE 53:Fl5,D9=3E 3C EF
D21,8F=EB CB F6 EB 3E 3C EF C9:F21,8F=OO 00 00 00 00 00 00 00

Volume I. i

The PATCH Corner - 90 - The PATCH Corner

I
-L

I
_J

J
I

_J

J
I
I __,

J
I
I

_J

J
I

-I

J
I

J
i
I

....J

J
J
J

I
.J

I
-I

I
I

_j

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986

• DESC62/FIX - Patch to PRO-DESCRIBE
• This fix corrects the titling for printing directories

Install via: PATCH DESCRIBE.DESCRIBE DESC62
• Inhibit ETX from being output in title nouns
DOB,DD=FE 20 D8 CD F4 39 18 F6:FOB,DD=CD F4 39 FE 20 30 F7 C9
• Output the title display via <P> on every page
DOB,OC=CD 6E 3C:FOB,OC=CD 05 3A
DOD,66=11 03 CD OS 3A 3E 3C 32 12 3A C9
FOD,66=69 66 69 63 61 74 69 6F 6E 11 03

• DESC63/FIX - Patch to PRO-DESCRIBE - April 22, 1985
• This fix corrects the <C> command when extending the directory of certain
• hard drive partitions; inhibits extended directory records from <F> command.
• Apply via: PATCH DESCRIBE.DESCRIBE DESC63
DOA,28=CD EE 3C 20:FOA,28=1A E6 10 28
DOD,E8=1A E6 90 FE 10 C9:FOD,E8=00 00 00 00 00 00
DlD,39=CD B6 53:FlD,39=3E 4B EF
D21,97=3E 4B EF C8 FE 06 C9:F21,97=00 00 00 00 00 00 00

• DESC64/FIX:3 - Patch to PRO-DESCRIBE - 05/01/85
• Patch to add to DESC63/FIX to correct operation with large capacity hard

drives when VERIFY=ON. Apply via: PATCH DESCRIBE.DESCRIBE DESC64
D21,9D=CO DS DD El DD 34 OA 20 03 DD 34 OB AF C9
F21,9D=C9 00 00 00 00 00 00 00 00 00 00 00 00 00

• DIALNOCL/FIX - 07/18/85 - Updated 11/23/85 - RS
• This patch can be applied to DIALER/ APP to eliminate the "Call"
• and "Input" commands so as to not require the *CL driver's
• availability. Note, that after this patch is applied, DIALER will
• NOT be able to operate a modem! Apply to a working copy of DIALER/APP only!
• Apply via: PATCH DIALER/APP DIALNOCL

D01,4B=OO:F01,4B=EF:D01,7C=C3 AD 28:F01,7C=ll 43 4C:D02,44=C3 56 29
F02,44=3E 41 CD:D02,AF=ll:F02,AF=CA:D02,CO=ll:F02,CO=CA
D07,75=11 ":F07,75="Call":D07,94=" ":F07,94="Input"

• OOEDIT61/FIX - 02/01/85 - Apply to PRO-ESP release of OOEDIT/FLT
Patch permits the entry of one or more parameters. Previously, only all or

• none could be entered. Apply via: PATCH DOEDIT/FLT OOEDIT61
D01,30=B7 28 09 FA E8 30 CB 6F 28 04:F01,30=CB 7F 20 08 CB 6F 28 06 E6 lF

• EDASSl/FIX - 01/25/85 - Patch EDAS Version 4.3
• This fix corrects macro comments and Model I KFLAG$
D04,F7=23 44; WAS 9F 42:D2B,F3=C3 FE 87 00; WAS FE 3B 28 48
D2E,26=79 00; WAS 78 81
D2F,85=FE 3B CA C8 84 23 77 23 CD 4C 62 CA C8 84 18 F6

• EDASS2/FIX - Patch to correct behavior of OPTION using a'+'
D31,2A=03; was 04 at X'899F'

• EDAS53/FIX - Patch to correct behavior after a "Q" command
DOE,94=00:DOF,39=00

• EDASS4/FIX - Patch to correct behavior of -MF assembly option
DlE,AD=38 2D 22 89 77 06 00 ED 42 CB 7E 28 22 Dl; at X'776A'
DlE,El=AF; at X'779E'

Volume I. i

The PATCH Corner - 91 - The PATCH Corner

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986

EDAS55/FIX - Patch to EDAS 1/3 EDAS module - 05/03/85
• This fix corrects the operation of LORG $
• Apply via: PATCH EDAS EDAS55
D27,DB=OE 88:. WAS =95 SB
D2F,95=3A 42 57 FE 03 CO C3 95 SB:. WAS =00 00 00 00 00 00 00 00 00

• EDAS56/FIX 05/10/85 - Patch to EDAS 4.3
This fix corrects EDAS when you assemble with the -WS and -LP switches

• while generating object file. Also, it corrects EDAS * by removing a
version date time stamp which loaded into the text buffer.
Apply via: PATCH EDAS EDAS56

D1C,48=C3 F8 81:. WAS =C4 E6 30:D3A,54=10:. WAS =01

. EDAS61/FIX - 01/25/85 - Patch TRSDOS 6.x EDAS Version 4.3

. This fix corrects macro comments
D2B,45=C3 C2 5A OO:F2B,45=FE 3B 28 48:D2D,78=79 OO:F2D,78=78 81
D2E,D3=FE 3B CA SC 57 23 77 23 CD 37 35 CA SC 57 18 F6
F2E,D3=00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

• EDAS62/FIX - Patch to correct behavior of OPTION using a '+'
D30,7C=03:F30,7C=04

• EDAS63/FIX - Patch to correct behavior after a "Q" command
DOE,19=00:FOE,19=AO:DOE,C3=00:FOE,C3=AO

• EDAS64/FIX - Patch to correct behavior of -MF assembly option
DlE,17=38 2D 22 65 4A 06 00 ED 42 CB 7E 28 22 Dl
FlE,17=Dl 38 2C 22 65 4A 06 00 ED 42 CB 7E 28 21
D1E,4B=AF:F1E,4B=AE

• EDAS65/FIX - Patch to PRO-CREATE EDAS module - 05/03/85
• This fix corrects the operation of LORG $: Apply via: PATCH EDAS EDAS65
D27,45=D2 5A:F27,45=59 5E
D2E,E3=3A F2 2A FE 03 CO C3 59 5E:F2E,E3=00 00 00 00 00 00 00 00 00

• EDAS66/FIX 05/10/85 - Patch to PRO-CREATE 4.3
• This fix corrects EDAS when you assemble with the -WS and -LP switches

while generating object file. Also, it corrects EDAS * by removing a ~
• version date time stamp which loaded into the text buffer •
• Apply via: PATCH EDAS EDAS66
D1B,AE=C3 BC 54:FlB,AE=C4 E6 30:D39,A6=10:F39,A6=01

EDFEDl/FIX - 03/27/86 - Patch to FED/APP of Mister ED
. Patch corrects closing of the file being edited •
• Apply via: PATCH FED/APP EDFEDl
D01,58=04:F01,58=0E

• EDMEDl/FIX - 03/18/86 - Patch to Mister ED's MED application
• Patch corrects the operation of the "A" and "H" commands
• Apply via: PATCH MED/APP EDMEDl
D02,9D=95 2F:F02,9D=lC 2C:D02,F3=95 2F:F02,F3=1C 2C
D08,19=31:F08,19=30:D08,95=F5 C3 lC 2C:F08,95=00 00 00 00

The PATCH Corner - 92 -

Volume I. i

The PATCH Corner

J
J

I
I __,

J
I
I

._,J

J
I

...,J

I
..J

J
I

....J

J
I

..J

I

J

J
J
I

....i

I
J

I
_j

I
J

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986

• EDMED2/FIX - 06/06/86 - Patch to Mister ED's MED application
• Patch corrects for a DOS error in @BANK, function 4
• as well as cure's obscure bug on exit to permit EXPORT

Apply via: PATCH MED/APP EDMED2/FIX
D01,0E=31 00 27 CS C3 99 2F:F01,0E=C5 01 00 00 3E 66 EF
D01,38=CD A3 2F 32 9A 2F:F01,38=3E 66 EF 32 10 28
D08,19=32:F08,19=31
D08,99=01 00 00 3E 66 EF Cl C3 15 28 OE 00 3E 66 EF C9
F08,99=00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

• EDTEDl/FIX - 03/31/86 - Patch to Mister ED's TED/APP & OOPS/APP
• Patch corrects abort exit when no 32K bank is available •
• Note that no beep tone will now be heard under this condition.
• Apply via: PATCH TED/APP EDTEDl/FIX and PATCH OOPS/APP EDTEDl
D01,6F=65:F01,6F=D9

• EDTED2/FIX - 06/06/86 - Patch to Mister ED's TED/APP application
• Patch corrects for a DOS bug in the @bank function 4 SVC
• Apply via: PATCH TED/APP EDTED2/FIX. Also: PATCH OOPS/APP EDTED2/FIX.
DOl,62=01 00 04 3E 66 EF DD 77 00 01 20 02 OD 28 64 CS
FOl,62=06 04 3E 66 EF DD 77 00 01 20 02 OD 28 65 CS 3E
D01,72=3E 66 EF Cl 20 F6 DD 71 01 04 3E 66 EF ED 62
FOl,72=66 EF Cl 20 F6 DD 71 01 04 3E 66 EF 21 00 00
D08,9B=32:F08,9B=30

• FMTDl/FIX - Patch to Model 1 LOOS 5.1.4 FORMAT/CMD
• Patch resets DCT for 2-sided format capability
• Apply via: PATCH FORMAT.RRW3 FMTDl
X'6EAD'=42 75:X'7542'=FD CB 03 A6 C3 E7 70

• FMTD3/FIX - Patch to Model 3 LOOS 5.1.4 FORMAT/CMD
• Patch resets DCT for 2-sided format capability
• Apply via: PATCH FORMAT.RRW3 FMTD3
X'6EA5'=37 75:X'7537'=FD CB 03 A6 C3 DF 70

• FMTD6/FIX - Patch to TRSDOS 6.2.x FORMAT/CMD
• Patch resets DCT for 2-sided format capability
• Apply via: PATCH FORMAT.UTILITY FMTD6
X'32A5'=16 3A:X'3A16'=FD CB 03 A6 C3 59 35

• HELPADDl/FIX - Applied 04/12/85
• This fix corrects the MAP option of the HELPADD utility provided with the
• PRO-HELP package. Apply via: PATCH HELPADD HELPADDl
D03,6E=1D:F03,6E=2C:D03,94=00 00 00 00 00 00 00:F03,94=CD OC 2A FE OD 20 F9

• HTH611/FIX - Patch to LS-Host/Term - HOST61/CMD module - 04/15/86
• Patch corrects logon password length for 7-10 characters •
• Apply via: PATCH HOST61 HTH611
D07,EE=OA:F07,EE=06

• HTH6Al/FIX - Patch to LS-Host/Term - HOST6A/CMD module - 04/15/86
• Patch corrects logon password length for 7-10 characters.
• Apply via: PATCH HOST6A HTH6Al
D08,26=0A:F08,26=06

Volume I. i

The PATCH Corner - 93 - The PATCH Corner

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986

HTH6Vl/FIX - Patch to LS-Host/Term - HOST6V/CMD module - 04/15/86
• Patch corrects logon password length for 7-10 characters •
• Apply via: PATCH HOST6V HTH6Vl
D07,07=0A:F07,07=06

• Patch to IFC5 Version 3.4b
.Fix to move the tag display char to the start of the line
D09,56=CD:D09,5B=85 6A 00: D19,1C=3E 06 CD 15 6A DD CB 13 7E C9
D08,E4=09:D08,F2=19:D09,31=20:D09,3B=2E:DOB,66=06
DOB,82=06:DlA,56=03:DlA,5C=03:DlB,OF=03
.Fix to allow copy of files which end at the end of the copy buffer
DOF,69=CD BF 6A:D19,26=78 B7 3A 21 73 CO Cl Cl C9
.Change version# to revision c
DlA,89="c"

• IFC53/FIX - 07/09/86 - Patch to IFC
• Patch corrects calculation of the number of directory sectors for certain
• hard drive configurations. Apply via: PATCH IFC IFC53
D02,4C=CD 98 6A:F02,4C=FD 7E 04
Dl9,2F=FD 7E 07 E6 EO FD 7E 04 C8 CB 20 C9
F19,2F=OO 00 00 00 00 00 00 00 00 00 00 00

• Patch to IFC6 Version 3.4b
.Fix to move the tag display char to the start of the line
D09,56=CD:F09,56=DD:D09,5B=93 3C 00:F09,5B=CB 13 7E
Dl7,22=3E 04 CD 58 3C DD CB 13 7E C9:Fl7,22=00 00 00 00 00 00 00 00 00 00
D08,E8=06:F08,E8=05:D08,F6=1E:F08,F6=1D:D09,31=2A:F09,31=29:D09,3B=3D
F09,3B=3C:DOB,65=04:FOB,65=48:DOB,81=04:FOB,81=48:Dl9,18=03:F19,18=20
Dl8,5F=03:Fl8,5F=20:D18,65=03:Fl8,65=20
.Fix to allow copy of files which end at the end of the copy buffer
DOF,61=CD 9D 3C:FOF,61=3A 86 45
Dl7,2C=78 B7 3A 86 45 CO Cl Cl C9:Fl7,2C=OO 00 00 00 00 00 00 00 00
.Change version# to revision c
Dl8,92="c":F18,92="b"

• IFC63/FIX - 07/09/86 - Patch to PRO-IFC
Patch corrects calculation of the number of directory sectors for certain

• hard drive configurations. Apply via: PATCH IFC IFC63
D02,5l=CD A6 3C:F02,5l=FD 7E 04:Dl7,35=FD 7E 07 E6 EO FD 7E 04 ca CB 20 C9
Fl7,35=00 00 00 00 00 00 00 00 00 00 00 00

• M80344/FIX - Patch to Model 4 M80 V3.44 06-May-84
Apply via: PATCH M80 M80344

• Correct M80 to handle 7-character externs, entries, .REQ names.
DlA,4A=OO 00 FE 02 28:FlA,4A=28 04 FE 03 20
• Correct M80 to inhibit JCL from aborting on exit
D45,64=21 00 OO:F45,64=CD AD 74

• MAS51/FIX - 01/25/85 - Patch MODEL I/III MAS
• This fix corrects macro comments and Model I KFLAG$
D03,CB=23 44; WAS 9F 42:DlF,60=C3 C2 7C 00; WAS FE 3B 28 48
D21,97=79 00; WAS 78 81
D22,F2=FE 3B CA 8C 79 23 77 23 CD 86 SF CA BC 79 18 F6

• MAS52/FIX - Patch to correct behavior of OPTION using a'+'
D24,9B=03; was 04 at X'7E63'

Volume I. i

The PATCH Corner - 94 - The PATCH Corner

I
_J

!

J
!
!
! __,

I
_J

I
J

I

I
--'

I
_J

J
J

I
_J

J
I

J

J
J
J
J
J
J
J

Volume I. i THE MIS0SYS QUARTERLY - SUMMER 1986

• MAS53/FIX - Patch to correct behavior of -MF assembly option
Dl2,2B=38 2D 22 SE 6C 06 00 ED 42 CB 7E 28 22 Dl; at X'6C3F'
Dl2,63=AF; at X'6C73'

• MAS54/FIX - Patch to EDAS 1/3 MAS module - 05/03/85
• This fix corrects the operation of LORG $. Apply via: PATCH MAS MAS54
DlB,59=D2 7C:. WAS =59 80
D23,02=3A 42 58 FE 03 CO C3 59 80:. WAS =00 00 00 00 00 00 00 00 00

• MAS55/FIX 05/10/85 - Patch to EDAS 4.3
• This fix corrects MAS when you assemble with the -WS and -LP switches while
• generating object file. Apply via: PATCH MAS MAS55
DOF,76=C3 Cl 76:. WAS =C4 C3 SD

• MAS61/FIX - 01/25/85 - Patch TRSDOS 6.x MAS
• This fix corrects macro comments
DlF,OB=C3 A6 4F 00:FlF,OB=FE 3B 28 48:D21,3E=79 OO:F21,3E=78 81
D22,9D=FE 3B CA 70 4C 23 77 23 CD 9D 32 CA 70 4C 18 F6
F22,9D=OO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

• MAS62/FIX - Patch to correct behavior of OPTION using a'+'
D24,42=03:F24,42=04

• MAS63/FIX - Patch to correct behavior of -MF assembly option
Dll,EE=38 2D 22 SA 3F 06 00 ED 42 CB 7E 28 22 Dl
Fll,EE=Dl 38 2C 22 SA 3F 06 00 ED 42 CB 7E 28 21
Dl2,22=AF:Fl2,22=AE

• MAS64/FIX - Patch to PRO-CREATE MAS module - 05/03/85
• This fix corrects the operation of LORG $. Apply via: PATCH MAS MAS64
DlB,lC=B6 4F:FlB,lC=3D 53
D22,AD=3A F2 2B FE 03 CO C3 3D 53:F22,AD=OO 00 00 00 00 00 00 00 00

• MAS65/FIX 05/10/85 - Patch to PRO-CREATE 4.3
• This fix corrects MAS when you assemble with the -WS and -LP switches while
• generating object file. Apply via: PATCH MAS MAS65
DOF,39=C3 AS 49:FOF,39=C4 FS 30

• MED51/FIX - 01/25/85 - Patch MODEL I/III MED
• This fix corrects the Model I KFLAG$
D04,42=23 44; WAS 9F 42

• MED52/FIX - Patch to correct behavior after a "Q" command
DOD,49=00:DOD,EE=OO

• MED61/FIX - Patch to correct behavior after a "Q" command
DOC,DB=00:FOC,DB=AO:DOD,85=00:FOD,85=AO

• MLB51/FIX - Corrects "Replace module" - Apply via: PATCH MLIB MLB51
DOA,4F=EB:. was =E5:DOA,53=EB B7 ED 52:. was =Dl CD 80 7B
DOA,SA=OO 00:. was =ES 21
DOA,SE=OO 00 00 00 00 00 CA 19 SC DA:. was =Dl CD E6 7B 7C BS CA F4 SB C3

• MLB61/FIX - Corrects "Replace module". Apply via: PATCH MLIB MLB61
D09,35=EB:F09,35=E5:D09,39=EB B7 ED 52:F09,39=Dl CD A9 55
D09,40=00 00:F09,40=E5 21
D09,44=00 00 00 00 00 00 CA 03 39 DA:F09,44=Dl CD OF 56 7C BS CA DE 38 C3

Volume I. i

The PATCH Corner - 95 - The PATCH Corner

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986

MLIB61/FIX - 02/19/85 - Patch to PRO-MLIB
This fix corrects buffer operation when HIGH$ is X'FFFF'

• Apply via: PATCH MLIB MLIB61
D04,A7=00:F04,A7=23

• MLK51/FIX - Corrects *REQ handling - Apply via: PATCH MI.INK MLK51
D06,D0=21 5B 60 E3:. WAS =El 06 00 78
D07,EC=C3 AD 60 00 EB:. WAS =El 73 23 72 23

. MLK52/FIX - Corrects extern+offset if it's the first reference
• Apply via: PATCH MI.INK MLK52
D09,1C=EB:. was =C9:D0A,BF=CD 83 61 Dl 19 EB:. was =EB CD 84 61 Dl 19

• MLK53/FIX - Adds"$", "_", "@", and"*" to acceptable
• filespecs and symbols for -E=symbol - Apply via: PATCH MI.INK MLK53
D01,FF=40:. WAS =41@ 5A82H:D02,2C=F4 69:. WAS =81 5A@ 5AAFH:D02,4l=F4 69
• WAS =81 5A@ 5AC4:Dll,AD=FE 24 CS FE 7F CS FE 2A CS C3 81 5A

WAS =00 00 00 00 00 00 00 00 00 00 00 00@ 69F4H

MLK54/FIX - Various corrections
(1) corrects forced change of transfer address, (2) corrects link of
symbols defined as absolute, (3) inhibits REQ library search if all symbols

• are defined. Apply via: PATCH MI.INK MLK54
D04,4A=l4:F04,4A=l2:D07,FA=0D 6A:F07,FA=l3 69:D0A,04=CD 00 6A:F0A,04=5E 23 56
Dll,BD=E5 CD 6A 66 El 5E 23 56 D8 El C3 92 6A
Fll,BD=00 00 00 00 00 00 00 00 00 00 00 00 00
Dll,CA=B7 C2 13 69 67 6F C9:Fll,CA=00 00 00 00 00 00 00

MLK55/FIX - Corrects one byte in MLK53/FIX
. Apply via: PATCH MI.INK (Dll,Bl=5F)

• MLK56/FIX - 11/15/85 - Patch to MI.INK in MR.AS
• This fix corrects a bug when .REQ is used in the root of an overlay
• generation and the command line containing the -0 switch also contains
• additional linker commands. Apply via: PATCH MI.INK MLK56
D0A,0C=30 55:. Was =43 56 at X'626F'

• MLK57/FIX - 03/25/86 - Patch to Model I/III MLINK/CMD - corrects operation
• of the -z switch. Apply via:(LDOS's PATCH command): PATCH MI.INK MLK57
D04,0C=C9:. was CS at X'5C87'

• MLK58/FIX - Patch to Model I/III MI.INK - (1) corrects MLK54/FIX
Dll,C8=7E 62:. WAS =92 6A

. MLK61/FIX - Corrects *REQ handling - Apply via: PATCH MI.INK MLK61
D06,DC=21 7F 33 E3:F06,DC=El 06 00 78
D07,F8=C3 Dl 33 00 EB:F07,F8=El 73 23 72 23

• MLK62/FIX - Corrects extern+offset if it's the first reference
• Apply via: PATCH MI.INK MLK62
D09,28=EB:F09,28=C9:D0A,CB=CD A7 34 Dl 19 EB:F0A,CB=EB CD A8 34 Dl 19

. MLK63/FIX - Adds"$","","@", and"*" to acceptable filespecs and symbols
• for -E=symbol. Apply vi-;: PATCH MI.INK MLK63
D01,EB=40:F01,EB=41:D02,18=30 3D:F02,18=85 2D:D02,2D=30 3D:F02,2D=85 2D
Dll,D5=FE 24 CS FE 7F CS FE 2A CS C3 85 2D
Fll,D5=00 00 00 00 00 00 00 00 00 00 00 00

Volume I. i

The PATCH Corner - 96 - The PATCH Corner

I
_J

i

J

J
J
J
J

J
J
J

I
......J

I
~

J
J
J
J
J
J
J

Volume I.i THE MISOSYS QUARTERLY - SUMMER 1986

• MLK64/FIX - Various corrections - (!) corrects forced change of transfer
• address, (2) corrects link of symbols defined as absolute, (3) inhibits REQ
• library search if all symbols are defined. Apply via: PATCH Ml.INK MLK64
D04,4D=l4:F04,4D=l2:D08,06=49 3D:F08,06=37 3C:D0A,!0=CD 3C 3D:F0A,10=5E 23 56
Dll,El=ES CD 8E 39 El SE 23 56 D8 El C3 B6 35
Fll,El=00 00 00 00 00 00 00 00 00 00 00 00 00
Dll,EE=B7 C2 37 3C 67 6F C9:Fll,EE=00 00 00 00 00 00 00

• MLK65/FIX - Corrects one byte in MLK63/FIX
• Apply via: PATCH Ml.INK (Dll,D9=5F:Fll,D9=7F)

• MLK66/FIX - 11/15/85 - Patch to Ml.INK in PRO-MRAS
• This fix corrects a bug when .REQ is used in the root of an overlay
• generation and the command line containing the -0 switch also contains
• additional linker commands. Apply via: PATCH Ml.INK MLK66
D0A,18=20:F0A,!8=F3

• MLK67/FIX - 03/25/86 - Patch to Model 4 MLINK/CMD
• Patch corrects operation of the -Z switch: Apply via: PATCH Ml.INK MLK67
D04,0F=ED:F04,0F=EC

• MRS51/FIX - Corrects EXT at end and file option
• Apply via: PATCH MRAS MRS51
Dl4,94=7A 82:. WAS =A3 6E
D28,C2=23 79 E6 CO B6 77 El Dl C9:. WAS =00 00 00 00 00 00 00 00 00
D0E,42=C3 83 82:. WAS =OD 20 F4
D28,CB=0D F2 59 68 C3 72 68:. WAS =00 00 00 00 00 00 00

• MRS52/FIX - Corrects DW in rel segment with absolute value operand
• Apply via: PATCH MRAS MRS52
D28,B3=9B 65 B7 28:F28,B3=B3 67 B7 20

• MRS54/FIX - Corrects transfer address generation for certain cases
• Apply via: PATCH MRAS MRS54
D!F,C3=CD 8A 82 28 08 CD B7 62 EB 3A 9B 65 47 22 30 58 78
• was =21 00 00 45 28 05 CD B7 62 EB 04 22 30 58 3A 9B 65@ 799FH
D28,D2=21 00 00 45 C9:. was=00 00 00 00 00@ 828AH

• MRS55/FIX - Patch to Model I/III MRAS - 11/27/85
• Patch corrects chain external across segments
• Apply via: PATCH MRAS MRS55
Dl4,A4=C3:; WAS =F2@ 6EACH

• MRS56/FIX - 02/10/86 - Patch to Model 1/3 (MRAS) MRAS/CMD
• Patch corrects crash when PUBLIC, EXTRN, or REF Pseudo-OPs have an argument
• name greater than 15 characters in length. Also corrects logic tests (IFREF,
• IFDEF, etc) under same. Apply via: PATCH MRAS MRS56
D!C,A3=CD 99 82:. WAS =CD 92 76:D!E,35=CD 8F 82:. WAS =3A 33 58
D28,D7=3E OF B9 30 01 4F 3A 33 58 C9 3E OF B9 30 01 4F C3 92 76
• WAS =00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

• MRS61/FIX - Corrects EXT at end and file option
• Apply via: PATCH MRAS MRS61
Dl4,57=5E 55: Fl4,57=9F 41
D28,6D=23 79 E6 CO B6 77 El Dl C9:F28,6D=00 00 00 00 Q0 00 00 00 00
D0E,00=C3 67 55:F0E,00=0D 20 F4
D28,76=0D F2 50 3B C3 69 3B:F28,76=00 00 00 00 00 00 00

Volume I.i

The PATCH Corner - 97 - The PATCH Corner

Volume I. i THE MIS0SYS QUARTERLY - SUMMER 1986

• MRS62/FIX - Corrects DW in rel segment with absolute value operand
• Apply via: PATCH MR.AS MRS62
D28,5E=92 38 B7 28:F28,5E=AA 3A B7 20

• MRS63/FIX - Corrects "ENTRY exp" if "exp" is not program relative
• Apply via: PATCH MR.AS MRS63
DlF,89=28 08 CD AE 35 EB 3A 92 38 47 22 E0 2B 78
FlF,89=45 28 05 CD AE 35 EB 04 22 E0 2B 3A 92 38

• MRS64/FIX - Corrects transfer address generation for certain cases
• Apply via: PATCH MR.AS MRS64
DlF,86=CD 6E 55 28 08 CD AE 35 EB 3A 92 38 47 22 E0 2B 78
FlF,86=21 00 00 45 28 05 CD AE 35 EB 04 22 E0 2B 3A 92 38
D28,7D=21 00 00 45 C9:F28,7D=00 00 00 00 00

• MRS65/FIX - Patch to PRO-MRAS - 11/27/85
• Patch corrects chain external across segments - Apply via: PATCH MR.AS MRS65
Dl4,67=C3:Fl4,67=F2

• MRS66/FIX - 02/10/86 - Patch to Model 4 (PRO-MRAS) MRAS/CMD
Patch corrects crash when PUBLIC, EXTRN, or REF Pseudo-DPs have an argument
name greater than 15 characters in length. Also corrects logic tests (IFREF,

• IFDEF, etc) under same.Apply via: PATCH MR.AS MR.S66
DlC,66=CD 7D 55: FlC,66=CD BE 49: DlD,F8=CD 73 55: FlD,F8=3A E3 2B
D28,82=3E OF B9 30 01 4F 3A E3 2B C9 3E OF B9 30 01 4F C3 8E 49
F28,82=00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

• MSD51/FIX - Correct abort of save block - Apply via: PATCH SAID MSD51
D0A,FE=C3 BE 78 D5:D26,B2=CD 19 6E Dl D8 C3 CD SC

• MSD52/FIX - Corrects Query S&R - Apply via: PATCH SAID MSD52
D09,1C=C3 96 78:. was =CD 2B 71 at SAF0H
D0C,AA=00 00 00:. was =DA DF 6F at 5E6EH
D26,BA=CD 2B 71 DA DF 6F C3 F3 SA:. was =00 00 00 00 00 00 00 00 00 at 7896H

• MSD53/FIX - Patch to Model I/III Said version 1.1
• correct line number count when carriage returns are entered
D0l,DF=CD 9F 78:. WAS =22 EF 7F
D26,C3=22 EF 7F 2A Fl 7F 2B 7E FE OD CO C3 A3 6A
• WAS =00 00 00 00 00 00 00 00 00 00 00 00 00 00
• allow delete all to restore default extension
D0D,0B=C3 BB 78:. WAS =C3 FC 6B
D26,Dl=21 9E 7F 11 E8 79 01 03 00 ED BO 60 69 C9
• WAS =00 00 00 00 00 00 00 00 00 00 00 00 00 00
D26,DF=21 E8 79 11 9E 7F 01 03 00 ED BO C3 FC 6B
• WAS =00 00 00 00 00 00 00 00 00 00 00 00 00 00
D29,B5=CD AD 78:. WAS =21 00 00
.eop

MSD54/FIX - Patch to Model I/III SAID version 1.1
• Corrects DOS command when the invoked program sets a high-memory stack
. which would be in the region of the originally located text. Also ensures
• that system cursor stays off on return to SAID
D0E,62=F3:. WAS =FB:D0E,6E=C3 C9 78:. WAS =C3 BO 5F:D24,43=0F:. WAS =2E
D26,ED=ED 7B EC 79 FB C3 BO SF:. WAS =00 00 00 00 00 00 00 00

Volume I.i

The PATCH Corner - 98 - The PATCH Corner

i -

J.
J
J
J
J
I __,.

I
_j,

I
_,J•

J
I
i

_l

I

J

J
J

J
J
J
J
J

Volume I. i THE MISOSYS QUARTERLY - SUMMER 1986

• MSD61/FIX - Correct abort of save block - Apply via: PATCH SAID MSD61
DOB,42=C3 20 4C D5:FOB,42=CD B4 44 D8
D26,C4=CD B4 44 Dl D8 C3 OD 31:F26,C4=00 00 00 00 00 00 00 00

• MSD62/FIX - Corrects Query S&R - Apply via: PATCH SAID MSD62
D09,1E=C3 28 4C:F09,1E=CD AS 47:DOC,EA=OO 00 00:FOC,EA=DA 5A 46
D26,CC=CD AS 47 DA 5A 46 C3 F5 2E:F26,CC=OO 00 00 00 00 00 00 00 00

• MSD63/fix - 02/10/86 - Patch to Model 4 SAID version 1.1
• Apply via: PATCH SAID MSD63
• correct line number count when carriage returns are entered
D01,E2=CD 31 4C:F01,E2=22 97 57
D26,D5=22 97 57 2A 99 57 2B 7E FE OD CO C3 00 41
F26,D5=00 00 00 00 00 00 00 00 00 00 00 00 00 00

allow delete all to restore default extension
DOD,4F=C3 4D 4C:FOD,4F=C3 65 42
D26,E3=21 46 57 11 88 4D 01 03 00 ED BO 60 69 C9
F26,E3=00 00 00 00 00 00 00 00 00 00 00 00 00 00
D26,Fl=21 88 4D 11 46 57 01 03 00 ED BO C3 65 42
F26,Fl=OO 00 00 00 00 00 00 00 00 00 00 00 00 00
D29,C4=CD 3F 4C:F29,C4=21 00 00
.eop

MSD64/FIX - Patch to Model 4 PRO-SAID version 1.1
• Corrects DOS command when the invoked program sets a high-memory stack
• which would be in the region of the originally located text. Also ensures
• that system cursor stays off on return to SAID
DOE,6E=F3:FOE,6E=FB:DOE,7A=C3 SB 4C:FOE,7A=C3 DF 33:D24,36=05:F24,36=2E
D26,FF=ED 7B SC 4D FB C3 DF 33:F26,FF=OO 00 00 00 00 00 00 00

• PARMDIRx/FIX - undated - This fix suppresses the NOTES on a MAP parm.
X'54CE'=CD BA 61:X'61BA'=21 00 00 22 4D 55 21 49 SF C9

• PDSC/FIX by David F. Roberts - Patch to write file modification date to
• PaDS directory instead of date of addition.
X'52E6'=18 16:X'5966'=C2 F2 55 ED 4B 70 58 CD 10 4B C2 F2 55 23 D5 11
X'5976'=F3 58 7E E6 OF 12 23 13 7E 12 Dl C9:X'53E9'=CD 66 59

• PPADSD/FIX Suggested by David F. Roberts - Patch to write file modification
• date to PaDS directory instead of date of addition.
X'26CE'=l8 19:X'2D75'=C2 EE 29 ED 4B 7F 2C 3E 57 EF C2 EE 29 23 D5 11
X'2D85'=02 2D 7E E6 OF 12 23 13 7E 12 Dl C9:X'27DC'=CD 75 2D

• PPADSE/FIX - 10/24/85 - Corrects PDS(LIST) numbering in PRO-PaDS
• Apply via: PATCH PDS.PDS PPADSE
D08,B3=CD 7C 29:F08,B3=3E 62 EF
DOA,Bl=6E 6F 74 20 61 20 50 44 53 21 OD CS 4F 3E 62 EF Cl C9
FOA,Bl=66 69 6C 65 20 69 73 20 6E 6F 74 20 61 20 50 44 53 21

• PROESPl/FIX - Patch to MINIDOS/FLT of PRO-ESP - Patch corrects system
• lockup on error conditions. Apply via: PATCH MINIDOS/FLT PROESPl
D02,Dl=06 3E 22 EF CS El 3E 08 18 E6:F02,Dl=EF 3E 21 EF 3E 08 20 E8 3E 22

• PROESP2/FIX - Patch to MINIDOS/FLT of PRO-ESP - Patch corrects error
• recovery of the "K" command. Apply via: PATCH MINIDQS/FLT PROESP2
D02,94=C3 SB 32:F02,94=CA AS 31

Volume I.i

The PATCH Corner - 99 - The PATCH Corner

Volume Li THE MISOSYS QUARTERLY - SUMMER 1986

• PRONT013/FIX - Patch to PSORT V2.la of PRO-NTO - 07/17/86 - Patch corrects
• PSORT's PACK option when nrec > 256. Apply via: PATCH PSORT PRONT013
DOD,24=7C:FOD,24=7D

PTRACE61/FIX - 06/21/85 - Patch to PRO-DD&T package - This fix corrects
• PTRACE running under TRSDOS 6.2 so that it does not hang the system. Note
• that there will no longer be a blinking asterisk in the upper right hand
• corner of the display while PTRACE is active as stated in the documentation.
D00,9E=FE:F00,9E=FF:D01,35=CD C2 37:FOl,35=01 6E 03:D01,39=E6:F01,39=DD
D04,E4=00:F04,E4=EF:D07,Bl=Ol 6E 03 7C FE F4 D8 21 FF F3 C9
F07,Bl=OO 00 00 00 00 00 00 00 00 00 00

• PZSHELLl/FIX - 02/01/85 - For PRO-ZSHELL release only! - This fix corrects
• redirection of input and piping. Apply via: PATCH ZSHELL PZSHELLl
D09,64=43:F09,64=41

SAIDINSl/FIX - Patch to SAID's SAIDINS/CMD - Patch corrects display of
. SHIFT key sense for keys with CLEAR key and A-Z shifted/unshifted

Apply via: PATCH SAIDINS SAIDINSl/FIX
D20,82=7E 3D 07 E6 01 32 7D 67 00 00 00 00 00
• WAS =6E 26 00 ES 21 80 00 Dl CD 2F 71 7C BS
D22,AE=7E FE 60 3E 01 30 01 3D EE 00 00 00 00
• WAS =6E 26 00 ES 21 60 00 Dl CD 2F 71 7C BS

• SAIDIN61/FIX - Patch to PRO-SAID's SAIDINS/CMD - Patch corrects display of
. SHIFT key sense for keys with CLEAR key and A-Z shifted/unshifted
• Apply via: PATCH SAIDINS SAIDINS61/FIX
Dl4,2B=7E 3D 07 E6 01 32 51 3F 00 00 00 00 00
Fl4,2B=6E 26 00 ES 21 80 00 Dl CD B6 47 7C BS
Dl5,E6=7E FE 60 3E 01 30 01 3D EE 00 00 00 00
Fl5,E6=6E 26 00 ES 21 60 00 Dl CD B6 47 7C BS

UDlUNKl/FIX - Patch to Utility Disk I UNKILL/CMD - Patch corrects operation
• if the target file uses an extended directory record

Apply via: PATCH UNKILL (D02,92=00)

XREFSl/FIX - Patch to EDAS 4.3's XREF V4.3a - Patch relocates out-of-memory
• test routine so that really BIG /REF files will be properly trapped for OM
• errors. Apply via: PATCH XREF XREFSl
D01,AD=54:. WAS =47:D01,F3=2A FA SB ED SB FE SB AF ED 52 DA SD 59 18 A7
• WAS =18 B4 2A FA SB ED SB FE SB AF ED 52 DA SD 59

• XREF61/FIX - Patch to PRO-CREATE's XREF V4.3a - Patch relocates out-of-memory
test routine so that really BIG /REF files will be properly trapped for OM

• errors. Apply via: PATCH XREF XREF61
D01,6F=54:F01,6F=47:D01,B5=2A D2 39 ED SB D6 39 AF ED 52 DA 92 37 18 A7
FOl, B5=18 B4 2A D2 39 ED SB D6 39 AF ED 52 DA 92 37 ~-

ZCAT61/FIX - Patch to PRO-ZCAT - 02/19/86 - This patch corrects for
printing problems when "Printer NOT available" messages result from print
buffer full conditions. Apply via: PATCH ZCAT ZCAT61

X'3638'=ES CS 21 00 16 C3 9F 3B 3E 02 EF Cl El C9
X'3B9C'=C3 38 36:X'3BBC'=C3 40 36

Volume I.i

The PATCH Corner - 100 - The PATCH Corner

